АЛГОРИТМ ОБРОБЛЯННЯ СИГНАЛІВ ПІД ЧАС АНАЛІЗУ ПОШИРЕННЯ ПОВЕРХНЕВИХ УЛЬТРАЗВУКОВИХ ХВИЛЬ
Keywords:
surface ultrasonic waves, waveletsAbstract
The algorithm of signal processing of ultrasonic surface waves, based on the theory of wavelet transform is presented. It is presented approach of reducing noise in the signal. The method of selection of informative individual parts from the total signal in frequency and time domains is presented. Results are given in graphs.
Downloads
Download data is not yet available.
References
1 Kuo I.Y. A novel method for the measurement of acoustic speed / I.Y. Kuo, B. Hete, K.K. Shung // J. Acoust. Soc. Am.- 1990.- Volume 88.- Issue 4.- p. 1679-1682.
2 Hsu D.K. Simultaneous ultrasonic velocity and sample sickness measurement and application in composites / D. K. Hsu, M. S. Hughes // J. Acoust. Soc. Am.- 1992.- Volume 92.- Issue 2.- p. 669-675.
3 Grossmann A. Decomposition of Hardsi functions into square integrable wavelets of constant shape / Grossmann A., Morlet J. // SIAM J. Math.- 1984.- 15.- p. 723-736.
4 Mallat S. Multiresolution representations and wavelets, Ph.D. Thesis, University of Pennsylvania, Philadelphia.- 1988.
5 Meyer Y. Wavelets and Operators: Vol. 37. (Cambridge Studies in Advanced Mathematics). / Meyer Y. - Cambridge University Press. - 1995. - 244 p. - ISBN 978-0521458696.
6 Daubechies I. Orthonormal bases of compactls] supported wavelets / Daubechies I. // Comm. Pure Appl. Math.-1988.- 41.- p. 909-996.
7 Radunovic D.P. Wavelets: From Math to Practice. / D. P. Radunovic.- Springer.- 2009.- 160 p.- ISBN 978-3642006135.
8 Coifman R. R. Entropy-based algorithms for best basis selection / Coifman, R.R., M.V Wickerhauser // IEEE Trans. on Inf. Theory.- 1992.- vol. 38.- 2.- p. 713-718.
9 Addison N. The Illustrated Wavelet Transform Handbook / N. Addison.- Taylor & Francis.- 2002.- 400 p.- ISBN 978-0750306928.
2 Hsu D.K. Simultaneous ultrasonic velocity and sample sickness measurement and application in composites / D. K. Hsu, M. S. Hughes // J. Acoust. Soc. Am.- 1992.- Volume 92.- Issue 2.- p. 669-675.
3 Grossmann A. Decomposition of Hardsi functions into square integrable wavelets of constant shape / Grossmann A., Morlet J. // SIAM J. Math.- 1984.- 15.- p. 723-736.
4 Mallat S. Multiresolution representations and wavelets, Ph.D. Thesis, University of Pennsylvania, Philadelphia.- 1988.
5 Meyer Y. Wavelets and Operators: Vol. 37. (Cambridge Studies in Advanced Mathematics). / Meyer Y. - Cambridge University Press. - 1995. - 244 p. - ISBN 978-0521458696.
6 Daubechies I. Orthonormal bases of compactls] supported wavelets / Daubechies I. // Comm. Pure Appl. Math.-1988.- 41.- p. 909-996.
7 Radunovic D.P. Wavelets: From Math to Practice. / D. P. Radunovic.- Springer.- 2009.- 160 p.- ISBN 978-3642006135.
8 Coifman R. R. Entropy-based algorithms for best basis selection / Coifman, R.R., M.V Wickerhauser // IEEE Trans. on Inf. Theory.- 1992.- vol. 38.- 2.- p. 713-718.
9 Addison N. The Illustrated Wavelet Transform Handbook / N. Addison.- Taylor & Francis.- 2002.- 400 p.- ISBN 978-0750306928.
Downloads
Published
2010-07-09
How to Cite
Лютак, І. З., Кісіль, І. С., Мандра, А. А., & Лютак, З. П. (2010). АЛГОРИТМ ОБРОБЛЯННЯ СИГНАЛІВ ПІД ЧАС АНАЛІЗУ ПОШИРЕННЯ ПОВЕРХНЕВИХ УЛЬТРАЗВУКОВИХ ХВИЛЬ. Scientific Bulletin of Ivano-Frankivsk National Technical University of Oil and Gas, (3(25), 189–194. Retrieved from https://nv.nung.edu.ua/index.php/nv/article/view/449
Issue
Section
МЕТОДИ ТА ЗАСОБИ НЕРУЙНІВНОГО КОНТРОЛЮ І ТЕХНІЧНОЇ ДІАГНОСТИКИ
License
Авторські права....