Development of a software solution for selecting the milling parameters of thin-walled elements of turbo machines
DOI:
https://doi.org/10.31471/1993-9965-2022-1(52)-65-72Keywords:
thin-walled parts, high-speed milling, milling parameters, deflections, FEM, programAbstract
The implementation of the development of a software solution for calculating the milling parameters of thin-walled elements of turbomachines is presented. The production of thin-walled elements requires high attention to the choice of optimal processing parameters. Complex geometry of thin-walled elements, low ability to resist deformation with an obstacle in the process of forming high-precision surfaces. The existing solutions mainly provide for obtaining parameters for processing the surfaces of parts with absolute rigidity, so the purpose of this implementation is to take into account the features of thin – walled elements, and implement interaction with the digital representation of the physical process in a complex form. The intelligent system provides both analytical microservices for calculating and optimizing parameters, and the use of a third-party CAE environment with the ability to execute scripts. The source of the theoretical database of tabular values is publications, research, engineering machine-building reference books. Information about input parameters is structured in blocks that correspond to the element geometry, material properties, machine type and power, features of the geometry and Tool material, the process of removing allowances with the inclusion of high-speed processing mode. The implementation makes it possible to calculate the cutting forces that occur during the removal of the allowance, in the direction of the minimum rigidity of the thin-walled element. The eigenfrequencies of the loaded geometry are modeled, and the corresponding amplitude response is constructed, which is included in the analysis and a recommendation conclusion is formed for compliance with the input technical conditions. It provides for the possibility of using and accumulating research results. The aim of the research is to develop a system that can be integrated into modern production, which corresponds to the vision of the progressive concept of Industry 4.0.
Downloads
References
Kusyi Ya. М., Stupnytskyy V. V., Lytvyniak Ya. М., Mentynskyi S. М., Panchuk V. H. Output parameters at development and production stage of a product in its life cycle. Scientific bulletin Ivano-Frankivsk national technical university of oil and gas. 2021. No 1(50). Р. 77-90. DOI: 10.31471/1993-9965-2021-1(50)-77-90. [in Ukrainian]
Liu S., Lu Y., Li J., Song D., Sun X., Bao J.Multi-scale evolution mechanism and knowledge construction of a digital twin mimic model. Elsevier BV. 2021. Vol. 71. Р. 102123. DOI: https://doi.org/10.1016/j.rcim.2021.102123.
Zhu Z., Xi X., Xu X., Cai Y. Digital Twin-driven machining process for thin-walled part manufacturing. In Journal of Manufacturing Systems. Elsevier BV. 2021. Vol. 59. Р. 453–466. DOI: https://doi.org/10.1016/j.jmsy.2021.03.015.
Dobrotvorskiy S., Kononenko S., Basova Y., Dobrovolska L., Ivanova M. Development of Optimum Thin-Walled Parts Milling Parameters Calculation Technique. DSMIE 2021. LNME. Р. 343–352. DOI: https://doi.org/10.1007/978-3-030-77719-7_34.
Kononenko S., Dobrotvorskiy S., Basova Y., Dobrovolska L., Yepifanov V. Simulation of Thin-walled Parts End Milling with Fluid Jet Support. DSMIE 2020. LNME. Р. 380–389. DOI: https://doi.org/10.1007/978-3-030-50794-7_37.
Kononenko S., Dobrotvorskiy S., Basova Y., Gasanov M., Dobrovolska L.Deflections and Frequency Analysis in the Milling of Thin-walled Parts with Variable Low Stiffness. Acta Polytechnica. 2019. Vol. 59. Р. 283–291. DOI: https://doi.org/10.14311/AP.2019.59.0283.
Liu C., Hong X., Zhu Z., Xu X. Machine Tool Digital Twin: Modelling Methodology and Applications. Proceedings of International Conference on Computers and Industrial Engineering, CIE. 2018.
Gomez M., No T., Schmitz T. Digital force prediction for milling. In Procedia Manufacturing. 2020. Vol. 48. Р. 873–881. DOI: https://doi.org/10.1016/j.promfg.2020.05.125.
Cornelius A., Karandikar J., Gomez M., Schmitz T. A Bayesian Framework for Milling Stability Prediction and Reverse Parameter Identification. In Procedia Manufacturing. 2021. Vol. 53. Р. 760–772. DOI: https://doi.org/10.1016/j.promfg.2021.06.073.
Dittrich M.-A., Uhlich F. Self-optimizing compensation of surface deviations in 5-axis ball-end milling based on an enhanced description of cutting conditions. In CIRP Journal of Manufacturing Science and Technology. 2020. Vol. 31. Р. 224–232. DOI: https://doi.org/10.1016/j.cirpj.2020.05.013.
Mozgovoy V. F., Balushok K. B., Kotov I. I., Panasenko V. A., Biruk M. K.“Strategii obrabotki lopatok monokoles na obrabatyvayushchikh tsentrakh s ChPU s peremennoy 3D-korrektsiey” [Strategies for processing blades on CNC machining centers with variable 3D correction]. Kharkiv, Aerospace Engineering and Technology, 2013. Vol. 7. Р. 22–28. [in Russian]
Li W., Wang L., Yu G. Force-induced deformation prediction and flexible error compensation strategy in flank milling of thin-walled parts. In Journal of Materials Processing Technology. 2021. Vol. 297. Р. 117258. DOI: https://doi.org/10.1016/j.jmatprotec.2021.117258.
Altintas Y., Tuysuz O., Habibi M., Li Z. L. Virtual compensation of deflection errors in ball end milling of flexible blades. In CIRP Annals. 2018. Vol. 67, Issue 1. Р. 365–368. DOI: https://doi.org/10.1016/j.cirp.2018.03.001.
Scippa A., Sallese L., Grossi N., Campatelli G. Improved dynamic compensation for accurate cutting force measurements in milling applications. In Mechanical Systems and Signal Processing. 2015. Vol. 54–55. Р. 314–324. DOI: https://doi.org/10.1016/j.ymssp.2014.08.019.
Diez, E., Perez, H., Marquez, J., & Vizan, A. Feasibility study of in-process compensation of deformations in flexible milling. In International Journal of Machine Tools and Manufacture. 2015. Vol. 94. Р. 1–14. DOI: https://doi.org/10.1016/j.ijmachtools.2015.03.008. Wąsik M., Kolka A. Machining Accuracy Improvement by Compensation of Machine and Workpiece Deformation. In Procedia Manufactu-ring. 2017. Vol. 11. Р. 2187–2194. DOI: https://doi.org/10.1016/j.promfg.2017.07.365.
Altintas Y. Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge university press. 2012. Second ed., p. 43.
Oberg E., Jones F., Horton H., Ryffel H. Machinery’s Handbook 29th ed. Christopher J, New York : Industrial Press. 2012. Р. 1081-1091.
Downloads
Published
How to Cite
Issue
Section
License
Авторські права....