Technological inheritance of parameters in the machining process of cylindrical bushings for drilling pumps
DOI:
https://doi.org/10.31471/1993-9965-2025-2(59)-85-100Keywords:
quality, technological process, surface plastic deformation, vibrational centrifugal hardeningAbstract
A shift in priorities when designing modern manufacturing technologies for critical oil and gas production components, specifically cylindrical bushings for drilling pumps, has rendered traditional finishing methods (machining or abrasive processing) less effective. The focus has moved from simply ensuring regulated accuracy and roughness parameters to achieving the required operational characteristics and reliability indicators. This necessitates a transition to alternative surface layer formation methods, among which pressure-based surface plastic deformation (SPD) processes hold a special place. Specialized SPD technological systems for vibrocentrifugal hardening, developed at Lviv Polytechnic National University for the final stages of part forming, can improve microrelief parameters, increase surface microhardness, and induce compressive residual stresses in the surface layer. This is achievable provided the specified machining accuracy is met in preceding technological operations. Adapted for bulk vibratory processing machines, this vibrocentrifugal hardening system, in accordance with the principle of technological parameter inheritance, significantly improves both height (reduced by 8.69–16.77 times) and step (reduced by 1.97–4.12 times) parameters of the functional inner surface roughness of cylindrical bushings NB 32.02.102-04. It simultaneously increases the relative bearing length of the profile (tm) by a factor of 1.7. Further research will focus on predicting the behavior of vibrocentrifugal hardening system components using reliability engineering methods, applying simulation-rheological modeling to analyze the finishing process, and analyzing the results of theoretical-experimental studies and computer modeling of the forming operations for functional surfaces of critical oil and gas production equipment parts.
Downloads
References
1. Ji, X., & Abdoli, S. (2023). Challenges and opportunities in product life cycle management in the context of Industry 4.0. Procedia CIRP, 119, 29–34. https://doi.org/10.1016/j.procir.2023.04.002
2. Barwasser, A., Lentes, J., Riedel, O., Zimmermann, N., Dangelmaier, M., & Zhang, J. (2023). Method for the development of Software-Defined Manufacturing equipment. International Journal of Production Research, 61(19), 6467–6484. https://doi.org/10.1080/00207543.2022.2129501
3. Rucka, M. (2020). Special issue: “Non-destructive testing of structures”. Materials, 13(21), 4996. https://doi.org/10.3390/ma13214996
4. Liao, Z., la Monaca, A., Murray, J., Speidel, A., Ushmaev, D., Clare, A., Axinte, D., & M'Saoubi, R. (2021). Surface integrity in metal machining - Part I: Fundamentals of surface characteristics and formation mechanisms. International Journal of Machine Tools and Manufacture, 162, 103687. https://doi.org/10.1016/j.ijmachtools.2020.103687
5. Demminger, C., Mozgova, I., Quirico, M., Uhlich, F., Denkena, B., Lachmayer, R., & Nyhuis, P. (2016). The concept of technical inheritance in operation: Analysis of the information flow in the life cycle of smart product. Procedia Technology, 26, 79–88. https://doi.org/10.1016/j.protcy.2016.08.012
6. Zmarzły, P. (2022). Analysis of technological heredity in the production of rolling bearing rings made of AISI 52100 steel based on waviness measurements. Materials, 15(11), 3959. https://doi.org/10.3390/ma15113959
7. Psarommatis, F., & Azamfireic, V. (2024). Zero defect manufacturing: A complete guide for advanced and sustainable quality management. Journal of Manufacturing Systems, 77, 764–779. https://doi.org/10.1016/j.jmsy.2024.10.022
8. Wanga, W., Liua, W., Fanga, Y., Zhengb, Y., Linc, C., Jiangd, Y., & Liuc, D. (2024). Reliability analysis of subway sliding plug doors based on improved FMECA and Weibull distribution. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 26(2), 178275. https://doi.org/10.17531/ein/178275
9. Kopei, V. B., & Kopei, B. V. (2021). Proektuvannia ta mitsnist kolon i z’iednan nasosnykh shtanh z polimernykh kompozytiv: Monohrafiia. Seriia «Naftohazove obladnannia»: u 12 t. [Design and strength of sucker rod strings and joints made of polymer composites: Monograph. Series "Oil and Gas Equipment": in 12 vols.] (Vol. 12; B. V. Kopei, Ed.). IFNTUNG. [in Ukrainian]
10. Kopei, B. V., Maksymuk, O. V., Shcherbyna, N. M., Rozghoniuk, V. V., & Kopei, V. B. (2003). Nasosni shtanhy i truby z polimernykh kompozytiv: proektuvannia, rozrakhunok, vyprobuvannia [Sucker rods and pipes made of polymer composites: design, calculation, testing]. IPPMM of NAS of Ukraine. [in Ukrainian]
11. Kusyi, Ya. M., & Topilnytskyy, V. H. (2013). Doslidzhennia yakosti poverkhni vibrozmitsnenykh detalei mashyn [Investigation of the surface quality of vibration-strengthened machine parts]. Visnyk Natsionalnoho universytetu “Lvivska politekhnika”. Seriia: Optymizatsiia vyrobnychykh protsesiv i tekhnichnyi kontrol u mashynobuduvanni i pryladobuduvanni, 772, 196–201. [in Ukrainian]
12. Kusyj, J., & Kuk, A. (2015). A centrifugal vibration strengthening method devised to improve technological reliability of machine parts. Eastern-European Journal of Enterprise Technologies, 1(7), 41–51. https://doi.org/10.15587/1729-4061.2015.36336
13. Kusyi, Y., Kuk, A., Klymash, I., Kusen, N., & Vriukalo, V. (2024). Technological inheritability of parameters of surface engineering of products after vibrational-centrifugal hardening. Lecture Notes in Networks and Systems, 1070, 198–209. https://doi.org/10.1007/978-3-031-66271-3_22
14. Stupnytskyy, V., & Xianning, S. (2021). Comprehensive analysis of tribological factor influence on stress-strain and thermal state of workpiece during titanium alloys machining. Archive of Mechanical Engineering, 68(2), 227–248. https://doi.org/10.24425/ame.2021.137049
15. Kusyi, Y. M., Stupnytskyy, V. V., Kuk, A. M., & Topilnytskyy, V. G. (2021). Development of the fundamental diagram of the formation and transformation of the products properties during their manufacturing. Journal of Physics: Conference Series, 1781(1), 012027. https://doi.org/10.1088/1742-6596/1781/1/012027
16. Kusyi, Ya. M., Onysko, O. R., Kuk, A. M., Kostiuk, O. S., & Solohub, B. V. (2023). Development of the structure and methodological support of the system for analysis of the details shaping using the technological inheritability of their quality parameters. Journal of Physics: Conference Series, 2540(1), 012026. https://doi.org/10.1088/1742-6596/2540/1/012026
17. Giampieri, A., Ling-Chin, J., Ma, Z., Smallbone, A., & Roskilly, A. P. (2020). A review of the current automotive manufacturing practice from an energy perspective. Applied Energy, 261, 114074. https://doi.org/10.1016/j.apenergy.2019.114074
18. Wolniak, P., Mozgova, I., & Lachmayer, R. (2018). Concept for the implementation of a scaling strategy into the paradigm of technical inheritance. Procedia Manufacturing, 24, 80–85. https://doi.org/10.1016/j.promfg.2018.06.012
19. Folder, U. (2015). Technological heredity and identification of technological processes. Polymer Science, Series D, 8, 219–222. https://doi.org/10.1134/S199542121503003X
20. Aftanaziv, I. S., Shevchuk, L. I., Strohan, O. I., Kuk, A. M., & Samsin, I. L. (2019). Improving reliability of drill pipe by strengthening of thread connections of its elements. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 22–29. https://doi.org/10.29202/nvngu/2019-4/8
21. Aftanaziv, I., Shevchuk, L., Samsin, I., Strutynska, L., & Strogan, O. (2019). Development of a technology for the surface strengthening of barrel channels in the large-caliber artillery guns. Eastern-European Journal of Enterprise Technologies, 3(1-99), 11–18. https://doi.org/10.15587/1729-4061.2019.167134
22. Haken, H., & Portugali, J. (2021). Information and self-organization II: Steady state and phase transition. Entropy, 23(6), 707. https://doi.org/10.3390/e23060707
23. Haken, H. (2016). The brain as a synergetic and physical system. Understanding Complex Systems, 147–163. https://doi.org/10.1007/978-3-319-27635-9_10
24. Kusyi, Y., Ivanov, V., Korniy, S., Datsko, B., & Hatala, M. (2025). Non-destructive evaluation of quality parameters of Al-Si workpieces after milling. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-025-16956-z
25. Shyrokov, V. V., Arendar, L. A., Kovalchyk, Yu. I., Vasyliv, Kh. B., & Vasyliv, O. M. (2005). Kompiuternyi obrobitok profilohram fryktsiinykh poverkhon [Computer processing of profilograms of friction surfaces]. Fizyko-khimichna mekhanika materialiv, (1), 93–96. [in Ukrainian]
26. Velychkovych, A. S., Shovkoplias, M. V., Vytvytskyi, V. S., & Ropyak, L. Ya. (2025). Analiz napruzhenoho stanu shtoka porshnevoho nasosa iz funktsionalnym pokryttiam pry heometrychnykh defektakh systemy «kreitskopf – napriamni» [Stress state analysis of a piston pump rod with a functional coating under geometric defects of the "crosshead – guides" system]. Naukovyi visnyk Ivano-Frankivskoho natsionalnoho tekhnichnoho universytetu nafty i hazu, 1(58), 15–24. https://doi.org/10.31471/1993-9965-2025-1(58)-15-24 [in Ukrainian]
Downloads
Published
How to Cite
Issue
Section
License
Авторські права....
1.png)













