A new method for processing steel bushings for pump packing seals
DOI:
https://doi.org/10.31471/1993-9965-2025-2(59)-33-43Keywords:
electro-spark alloying, metal-polymer composites, cutting tools, wear, microhardness, roughness, environmental safetyAbstract
This paper presents a new method for improving the surface quality parameters of steel bushings used in pump gland seals (GS). The proposed technique involves carburizing (CESA) the part surface using the method of electro-spark alloying (ESA) with a graphite electrode-tool (ET). A metal-polymer composite (MPC) reinforced with nickel powder grade PNE (GOST 972297) at a concentration of approximately 60%, hard alloy VK6 grade VK6 (TU 48-4205-112-2017) at about 60%, or zirconium nitride powder (CAS 25658-42-8) at about 80% is subsequently applied to the treated surface. The powders were added to a two-component epoxy system filled with ferrosilicon grade Loctite 3478, maintaining the above-mentioned reinforcement concentrations.The aim of this study was to improve the manufacturing process of protective steel bushings for pump gland seals operating in environments with increased corrosion activity, radiation exposure, or in pumps handling abrasive media. During the research, a coefficient K was proposed, corresponding to the surface roughness parameter Rz of the layer formed during CESA. This coefficient characterizes the depth of the treated layer after applying the reinforced MPC, at which the surface area of the polymer layer equals the area composed of the truncated roughness peaks formed during carburizing. A decrease in coefficient K indicates a predominance of the polymer-reinforced material in the total surface area, while an increase corresponds to a larger proportion of the bushing base material. Applying the proposed method for enhancing the surface layer properties of steel bushings in pump gland seals yields a hardened layer thickness ranging from 50 to 900 μm (depending on discharge energy Wₚ and steel grade), surface hardness of 990–1130 HV, and roughness Ra = 0.3–0.5 μm.
Downloads
References
1. Gaft, J., & Marcinkowski, M. (2004). A choice of the seal for the shaft of the pump. Proceeding of the Pump Users International Forum, Karlsruhe (pp. 37–44).
2. Panchenko, V.O., Herman, V.F., Ivchenko, O.V., et al. (2020). Pidkontrolna ekspluatatsiia obladnannia nasosnykh stantsii [Sub-controlled operation of pumping station equipment]: Textbook. Sumskyi derzhavnyi universytet. [in Ukrainian]
3. Sapozhnykov, Y., & Zahorulko, A. (2024). Computational studies of stuffing box packing seal wear mechanism using the Archard model. Problems of Tribology, 29(2/112), 6–15. https://doi.org/10.31891/2079-1372-2024-112-2-6-15
4. Kulykivskyi, V.L., & Orel, V.O. (2024). Mekhanichni vlastyvosti poverkhnevoho sharu zakhysnykh vtulok pislia elektromekhanichnoho poverkhnevoho zahartuvannia [Mechanical properties of the surface layer of protective sleeves after electromechanical surface hardening]. Zbirnyk tez dopovidei XXV Mizhnarodnoi naukovoi konferentsii "Suchasni problemy zemlerobskoi mekhaniky" (pp. 312-315). MON Ukrainy, Natsionalnyi universytet bioresursiv i pryrodokorystuvannia Ukrainy. [in Ukrainian]
5. Tarelnyk, V. B., Gaponova, O. P., Loboda, V. B., Konoplyanchenko, E. V., Martsinkovskii, V. S., Semirnenko, Yu. I., Tarelnyk, N. V., Mikulina, M. A., & Sarzhanov, B. A. (2021). Improving Ecological Safety when Forming Wear-Resistant Coatings on the Surfaces of Rotation Body Parts of 12Kh18N10T Steel Using a Combined Technology Based on Electrospark Alloying. Surface Engineering and Applied Electrochemistry, 57, 173–184. https://doi.org/10.3103/S1068375521020113
6. Tarelnyk, N. V., & Dotsenko, A. O. (2025). Pidvyshchennia yakosti metalorizalnykh instrumentiv, shcho pratsiuiut v umovakh radiatsiinoho oprominennia [Improving the quality of metal-cutting tools operating under radiation exposure]. Visnyk Vinnytskoho politekhnichnoho instytutu, (2), 157–163. https://doi.org/10.31649/1997-9266-2025-179-2-157-163 [in Ukrainian]
7. Martsynkovskyi, V. S., Tarelnyk, V. B., & Belous, A. V. (2008). Sposib tsementatsii stalevykh detalei elektroeroziinym lehuvanniam [Method of cementation of steel parts by electroerosive alloying] (Patent No. 82948 U Ukraine). Biuleten No. 10. https://doi.org/10.15407/mfint.42.05.0655 [in Ukrainian]
8. Martsynkovskyi, V. S., Tarelnyk, V. B., Pavlov, O. H., & Ishchenko, A. O. (2014). Sposib vidnovlennia znosh. poverkhon metal. detalei [Method of restoring worn metal surfaces of parts] (Patent No. 104664 U Ukraine). Biuleten No. 4. [in Ukrainian]
9. Tarelnyk, V., Konoplianchenko, I., Gaponova, O., Tarelnyk, N., Martsynkovskyy, V., Sarzhanov, B., Sarzhanov, O., & Antoszewski, B. (2020). Effect of Laser Processing on the Qualitative Parameters of Protective Abrasion-Resistant Coatings. Powder Metallurgy and Metal Ceramics, 58, 703–713. https://doi.org/10.1007/s11106-020-00127-8
10. Tarelnyk, V. B., Hlushkova, D. B., Haponova, O. P., Tarelnyk, N. V., Dotsenko, A. O., & Pavlovskyi, S. V. (2025). Sposib zmitsnennia metalorizalnykh instrumentiv [Method of strengthening metal-cutting tools] (Patent No. 158217 U Ukraine). Biuleten No. 2. [in Ukrainian]
Downloads
Published
How to Cite
Issue
Section
License
Авторські права....
1.png)













