EXPERIMENTAL STUDY OF THE PROCESS OF BORING MACHINE PARTS USING A CUTTER EQUIPPED WITH TENSOR SENSORS

Authors

  • N. T. Zubovetska Lutsk National Technical University 43018, Lvivska Str., 75, Lutsk, Ukraine
  • R. H. Redko Lutsk National Technical University 43018, Lvivska Str., 75, Lutsk, Ukraine
  • T. I. Chetverzhuk Lutsk National Technical University 43018, Lvivska Str., 75, Lutsk, Ukraine
  • R. A. Skliarov Ternopil Ivan Puluj National Technical University 46001, Ruska Str., 56, Room 2-80, Ternopil, Ukraine
  • V. V. Shanayda Ternopil Ivan Puluj National Technical University 46001, Ruska Str., 56, Room 2-80, Ternopil, Ukraine

DOI:

https://doi.org/10.31471/1993-9965-2025-1(58)-88-96

Keywords:

cutting modes, boring, non-rigid helical parts, strain gauge sensor, deformation.

Abstract

The article presents a methodology for experimental investigation of the boring process of non-rigid helical machine parts. Based on an analysis of recent research in this field, requirements are established for the physicomechanical properties of the workpiece material, technological and design parameters of helical parts, and their manufacturing technologies. Experimental results are described, particularly focusing on boring forces. During the machining of holes with small internal diameters in non-rigid helical workpieces made of materials that form continuous chips, friction between the chips and the machined surface and chip jamming inside the hole are observed. Accordingly, the quality of the machined surface depends on the chip curling behavior. A special boring tool setup with strain gauge sensors was developed for precise cutting force measurement. A tool with a replaceable cubic boron nitride (CBN) insert was used to create different internal profiles and to study the influence of tool geometry on the boring process. To ensure measurement accuracy, the strain gauges were calibrated on a custom test rig using lever systems in a static position. The experimental study established and optimized recommended feed values relative to specified surface roughness and cutting depth parameters. The research also revealed that cutting speed must be maintained within certain limits; otherwise, the helical surface may deform or bend. Resulting graphs demonstrated patterns of boring parameters: cutting forces decrease with increasing cutting speed, while forces increase with higher feed rate, cutting depth, and spiral thickness.

Downloads

Download data is not yet available.

References

General Procedure for Determining the Geometric Parameters of Tools in the Technological Systems Involving Machining by Cutting. / S. Botvinovska et al. Eastern-European Journal of Enterprise Technologies. 2021. Vol. 1, No. 1 (109). P. 6–12. DOI: https://doi.org/10.15587/1729-4061.2021.224897

Stephenson D.A., Agapiou J.S. Metal Cutting Theory and Practice (3rd ed.). CRC Press. 2014. 869 P. DOI: https://doi.org/10.1201/9781315373119

Koleva S., Enchev M., Szecsi. T. Analysis of the Mechanical Deformations of Boring Tools. Procedia Engineering. 2015. Vol. 132. P. 529–536. DOI: https://doi.org/10.1016/j.proeng.2015.12.529

Shatskyi I. P., Ropyak L. Y., Makoviichuk M. V. Strength Optimization of a Two-Layer Coating for the Particular Local Loading Conditions. Strength of Materials. 2016. Vol. 48, No. 5. P. 726–730. DOI: https://doi.org/10.1007/s11223-016-9817-5

Ropyak L. Y., Shatskyi I. P., Makoviichuk M. V. Influence of the Oxide-Layer Thickness on the Ceramic–Aluminium Coating Resistance to Indentation. Metallofizika i Noveishie Tekhnologii. 2017. Vol. 39, No. 4. P. 517–524. DOI: https://doi.org/10.15407/mfint.39.04.0517

Ropyak L. Y., Shatskyi I. P., Makoviichuk M. V. Analysis of Interaction of Thin Coating with an Abrasive Using One-Dimensional Model. Metallofizika i Noveishie Tekhnologii. 2019. Vol. 41, No. 5. P. 647–654. DOI: https://doi.org/10.15407/mfint.41.05.0647 (date of access: 05.06.2025).

Analytical Model of Deformation of a Functionally Graded Ceramic Coating under Local Load / I. Shatskyi et al. Ceramics. 2023. Vol. 6, no. 3. P. 1879–1893. DOI: https://doi.org/10.3390/ceramics6030115

Determination of Radial Displacement Coefficient for Designing of Thread Joint of Thin-Walled Shells / T. Tutko et al. Lecture Notes in Mechanical Engineering. Cham, 2021. P. 153–162. DOI: https://doi.org/10.1007/978-3-030-77719-7_16 (date of access: 05.06.2025).

Shatskyi I. P., Makoviichuk M. V., Ropyak L. Y. Equilibrium of Laminated Cu/Ni/Cr Coating Under Local Load. Nanosistemi, Nanomateriali, Nanotehnologii. 2023. Vol. 21, No. 2. DOI: https://doi.org/10.15407/nnn.21.02.379 (date of access: 05.06.2025).

Stressed State of Chrome Parts During Diamond Burnishing / M. Bembenek et al. Metallofizika i Noveishie Tekhnologii. 2023. Vol. 45, No. 2. P. 239–250. DOI: https://doi.org/10.15407/mfint.45.02.0239 (date of access: 05.06.2025).

Shatskyi I., Makoviichuk M., Ropyak L. Plane deformation of contrast layered coating under local load. Procedia Structural Integrity. 2024. Vol. 59. P. 407–412. DOI: https://doi.org/10.1016/j.prostr.2024.04.058 (date of access: 05.06.2025).

Poparov A., Izmirliqn A. Characteristics of Movements When Cylindrical Turning, Drilling, Coredrilling and Reaming. Environment. Technologies. Resources. Proceedings of the International Scientific and Practical Conference. 2023. Vol. 3. P. 200–203. DOI: https://doi.org/10.17770/etr2023vol3.7259

Storchak M, Stehle T, Möhring H-C. Determination of the Shear Angle in the Orthogonal Cutting Process. Journal of Manufacturing and Materials Processing. 2022; Vol. 6, No. 6. art. No. 132. DOI: https://doi.org/10.3390/jmmp6060132

Моделювання адгезійно-пресового з’єднання склопластикового стержня зі сталевою оболонкою / І.І. Чудик та інші. Вісник Східноукраїнського національного університету імені Володимира Даля. 2024, № 6(286). С. 156–165. DOI: https://doi.org/10.33216/1998-7927-2024-286-6-156-165

Dobrotă D, Oleksik M, Chicea AL. Ecodesign of the Aluminum Bronze Cutting Process. Materials. 2022; Vol. 15, No. 8. art. no. 2735. DOI: https://doi.org/10.3390/ma15082735

Probabilistic Approach to Calculating the Rational Thickness of the Tools Cutting Insert For Heavy Machine Tools. / Klymenko G. et al. Cutting & Tools in Technological System. 2023. Vol. 99. P. 110–118. DOI: https://doi.org/10.20998/2078-7405.2023.99.11

An Experimental Study of the Cutting Forces in Metal Turning. Korka, Z. et al. Analele Universităłıi «Eftımie Murgu» Reşiła Anul. 2013. Vol. XX, no. 2. P. 25–32.

Oborskyi H., Orgiyan A., Balaniuk A. Balancing Spindles with Tools for Finishing and Boring Machine. Proceedings of Odessa Polytechnic University/Odes' kyi Politechnichnyi Universytet Pratsi. 2023. Vol. 67, no. 1. P. 5–13. DOI: https://doi.org/10.15276/opu.1.67.2023.01.

Investigation of Cutting Force During Boring of Screw Non-Rigid Machine Parts. / R. Redko et al. Modern Technologies in Mechanical Engineering and Transport 2023. Vol 20, no. 1. P. 26–32. DOI: https://doi.org/10.36910/automash.v1i20.1030

Erkoçak, Y., Kayır, Y. Analyzing the Impacts of Cutting Parameters on Cutting Forces in the Taguchi Method for Boring High-Alloy White Cast Irons with CBN Inserts. Arab J Sci Eng. 2023. Vol. 48. P. 12569–12585. DOI: https://doi.org/10.1007/s13369-023-08008-z

An Embedded 3D Strain Tensor Sensor Based on the Eshelby’s Inclusion. / François, M.L.M. et al. Exp. Mech. 2017. Vol 57. P. 801–811. DOI: https://doi.org/10.1007/s11340-017-0266-2

Downloads

Published

2025-06-23

How to Cite

Zubovetska, N. T., Redko, R. H., Chetverzhuk, T. I., Skliarov, R. A., & Shanayda, V. V. (2025). EXPERIMENTAL STUDY OF THE PROCESS OF BORING MACHINE PARTS USING A CUTTER EQUIPPED WITH TENSOR SENSORS. Scientific Bulletin of Ivano-Frankivsk National Technical University of Oil and Gas, (1(58), 88–96. https://doi.org/10.31471/1993-9965-2025-1(58)-88-96