REVIEW OF METHODS AND TOOLS FOR INFORMATION SUPPORT OF THE DPRU LIFE CYCLE BASED ON BIM TECHNOLOGIES

Authors

  • A. M. Cheverda ІФНТУНГ, вул. Карпатська,15, м. Івано-Франківськ, Україна
  • V. I. Artym ІФНТУНГ, вул. Карпатська,15, м. Івано-Франківськ, Україна

DOI:

https://doi.org/10.31471/1993-9965-2024-1(56)-49-59

Keywords:

BIM (Building Information Modeling), oil and gas industry, downhole rod pumping units, CALS technologies, PLM, digital twin.

Abstract

The article is devoted to the study of the aspect of implementing BIM technology for information support of the life cycle (LC) of downhole rod pumping units (DRPU). The study highlights the role of BIM technologies in solving a wide range of problems arising at different stages of the BOP LC, from planning and design to operation and maintenance. The article discusses the specifics of using BIM to support information processes related to housing and community services, particularly in the context of construction technologies used in the design and planning of SBS. This approach helps to identify potential problems and risks in the early stages of the project, ensuring that they can be eliminated before active work begins. In addition, the article analyzes innovative data management methods and BIM-based information technologies to ensure effective monitoring of asset condition throughout the lifecycle. This includes continuous data updating and analysis, which helps to identify faults and plan repairs in a timely manner, minimizing downtime and reducing maintenance costs. The paper emphasizes the importance of interdisciplinary collaboration between professionals from different disciplines, such as engineers, architects, builders, and IT specialists. Using a systematic approach to BIM implementation allows different aspects of environmental and economic impacts to be considered, which helps to create more balanced and sustainable solutions. This not only helps reduce negative environmental impacts, but also improves the economic efficiency of projects. The results of the study show that integrating BIM into the management and maintenance of the SSNS can significantly improve the quality of decisions made at various stages of the life cycle. This includes improving design accuracy, reducing the risk of errors, and optimizing resources. The introduction of BIM technologies is therefore a key factor in the successful implementation of modern oil and gas production and maintenance projects.

Downloads

Download data is not yet available.

References

What Is BIM. Building Information Modeling. Autodesk. URL: https://www.autodesk.com/ae/solutions/bim (date of access 20.06.2024).

Zheng L., Lu W., Wu L., Zhou Q. A review of integration between BIM and CFD for building outdoor environment simulation. Building and Environment. 2023. 228. 109862. DOI: https://doi.org/10.1016/j.buildenv.2022.109862.

Smith D. K., Tardiff M. Building Information Modeling: A Strategic Implementation Guide for Architects, Engineers, Constructors, and Real Estate Asset Managers. Wiley, 2009. DOI: 10.1002/9780470432846.

Kopei V.B. Naukovo-metodolohichni osnovy avtomatyzovanoho proektuvannia obladnannia shtanhovoi sverdlovynnoi nasosnoi ustanovky : v 2 ch. dys. ... d-ra tekhn. nauk : 05.05.12. Ivano-Frankivsk, 2020. Ch. 1. 428 p. [in Ukrainian]

Exxon Mobil Corporation | ExxonMobil. URL: https://corporate.exxonmobil.com (date of access: 19.06.2024)

Махмудов С.А. Монтаж, эксплуатация и ремонт скважинных штанговых насосных установок: Справочник мастера. Москва : Недра, 1987. 208 с.

Федорович Я.Т. Машини та обладнання для видобутку нафти і газу : навчальний посібник. Івано-Франківськ : ІФНТУНГ, 2015. 344 с.

Peterson R., Smigura T., Brunings C., Quijada W., Gomez A. Production Increases at PDVSA Using an Improved SRP Control. SPE Annual Technical Conference and Exhibition. San Antonio, Texas, USA, September 2006. DOI: https://doi.org/10.2118/103157-MS.

Torres L. H.S., Schntman L. Sucker-Rod Pumping System of Oil Wells: Modelling, Identi_cation and Process Control. IFAC Proceedings. 2013. Vol. 46(24). P. 260-265. DOI: https://doi.org/10.3182/20130911-3-BR-3021.00052.

He Y.-P., Cheng H.-B., Zeng P., Zang C.-Z., Dong Q.-W., Wan G.-X., Dong X.-T. Working condition recognition of sucker rod pumping system based on 4-segment time-frequency signature matrix and deep learning. Petroleum Science. 2024. 21(1). P. 641-653. DOI: https://doi.org/10.1016/j.petsci.2023.08.031.

Lv X-X., Wang H-X., Xin Z., Liu Y-X., Zhao P-C. Adaptive fault diagnosis of sucker rod pump systems based on optimal perceptron and simulation data. Petroleum Science. 2022. Vol. 19(2). P. 743-760. DOI: https://doi.org/10.1016/j.petsci.2021.09.012.

Li J., Shao J., Wang W., Xie W. An evolutional deep learning method based on multi-feature fusion for fault diagnosis in sucker rod pumping system. Alexandria Engineering Journal. 2023. Vol. 66. P. 343-355. DOI: https://doi.org/10.1016/j.aej.2022.11.028.

Han Y., Li K., Ge F., Wang Y., Xu W. Online fault diagnosis for sucker rod pumping well by optimized density peak clustering. ISA Transactions. 2022. 120. P. 222-234. DOI: https://doi.org/10.1016/j.isatra.2021.03.022.

Zhang A., Gao X. Supervised dictionary-based transfer subspace learning and applications for fault diagnosis of sucker rod pumping systems. Neurocomputing. 2019. Vol. 338. P. 293-306. DOI: https://doi.org/10.1016/j.neucom.2019.02.013.

Tian H., Deng S., Wang C., Ni X., Wang H., Liu Y., Ma M., Wei Y., Li X. A novel method for prediction of paraffin deposit in sucker rod pumping system based on CNN indicator diagram feature deep learning. Journal of Petroleum Science and Engineering. 2021. 206. 108986. DOI: https://doi.org/10.1016/j.petrol.2021.108986.

Chen L., Gao X., Li X. Using the motor power and XGBoost to diagnose working states of a sucker rod pump. Journal of Petroleum Science and Engineering. 2021. 199. 2021. 108329. DOI: https://doi.org/10.1016/j.petrol.2020.108329.

Aliev T.A., Rzayev A.H., Guluyev G.A., Alizada T.A., Rzayeva N.E. Robust technology and system for management of sucker rod pumping units in oil wells. Mechanical Systems and Signal Processing. 2018. Vol. 99. P. 47-56. DOI: https://doi.org/10.1016/j.ymssp.2017.06.010.

Lv X., Wang H., Zhang X., Liu Y., Jiang D., Wei B. An evolutional SVM method based on incremental algorithm and simulated indicator diagrams for fault diagnosis in sucker rod pumping systems. Journal of Petroleum Science and Engineering. 2021. 203. 108806. DOI: https://doi.org/10.1016/j.petrol.2021.108806.

Kozlovska M., Petkanic S., Vranay F., Vranay D. Enhancing Energy Efficiency and Building Performance through BEMS-BIM Integration. Energies. 2023. 16(17). 6327. DOI: https://doi.org/10.3390/en16176327.

Parrott A., Warshaw, L. Industry 4.0 and the Digital Twin: Manufacturing Meets Its Match. New York : Deloitte University Press. 2017. URL: https://www2.deloitte.com/xe/en/insights/focus/industry-4-0/digital-twin-technology-smart-factory.html

Kopei V.B., Kopei B.V., Kuzmin O.O. Pryntsypy pobudovy modeli sverdlovynnoi shtanhovoi nasosnoi ustanovky dlia seredovyshcha Maplesoft MapleSim 7. Naukovyi visnyk Ivano-Frankivskoho natsionalnoho tekhnichnoho universytetu nafty i hazu. 2017. No 2(43). P. 42-52. [in Ukrainian]

Teicholz P., Sacks R., Lee G., Eastman C. BIM Handbook: A Guide to Building Information Modeling for Owners, Designers, Engineers, Contractors, and Facility Managers, 3rd Edition. Hoboken, New Jersey : Wiley. 2018. 688 p.

Saaksvuori A., Immonen A. Product lifecycle management. Third Edition. Berlin, Heidelberg : Springer-Verlag, 2008. 268 p.

Kopei V., Onysko O., Barz C., Dašić P., Panchuk V. Designing a Multi-Agent PLM System for Threaded Connections Using the Principle of Isomorphism of Regularities of Complex Systems. Machines. 2023. 11(2). 263. DOI: https://doi.org/10.3390/machines11020263.

Hobgood A. CALS Implementation - Still a Few Questions. Advanced Imaging, April 1990. P. 24–25.

NATO CALS Handbook. Version 2. June 2000. Brussel: NATO CALS Office, 2000. 342 p.

Shamieh C. Systems Engineering For Dummies, IBM Limited Edition. Wiley, 2012. 76 p.

Oil and natural gas | Shell Global. URL: https://www.shell.com/what-we-do/oil-and-natural-gas.html (date of access: 19.06.2024).

Van Dijk C. Steam-Drive Project in the Schoonebeek Field, The Netherlands. J Pet Technol. 1968. Vol. 20(03). P. 295–302. DOI: https://doi.org/10.2118/1917-PA.

Wilson A. Schoonebeek Heavy-Oil Redevelopment Requires Complex Chemistry Management. J Pet Technol. 2012. Vol. 64 (12). P. 116–119. DOI: https://doi.org/10.2118/1212-0116-JPT.

Mordue S., Swaddle P., Philp D. Building Information Modeling For Dummies. John Wiley & Sons. 2015. 416 p.

Kopei V. B., Paliichuk I. I. Zastosuvannia movy prohramuvannia Python dlia pobudovy baz znan z problem nadiinosti i dovhovichnosti shtan-hovykh sverdlovynnykh nasosnykh ustanovok. Naftohazova enerhetyka. 2011. No 2(15). P. 12-18. [in Ukrainian]

Kopei V.B., Onysko O.R., Panchuk V.G. Principles of development of product lifecycle management system for threaded connections based on the Python programming language. J. Phys.: Conf. Ser. 2020. 1426. 012033. DOI: 10.1088/1742-6596/1426/1/012033.

Rischmüller G., Mayer H. Oil Recovery by Sucker-Rod Pumps, Ternitz : Schoeller-Blackman GmbH, 1988. 150 p.

He Y-P., Zang C-Z., Zeng P., Wang M-X., Dong Q-W., Wan G-X., Dong X-T. Few-shot working condition recognition of a sucker-rod pumping system based on a 4-dimensional time-frequency signature and meta-learning convo-lutional shrinkage neural network. Petroleum Science. 2023. Vol. 20(2). P. 1142-1154. DOI: https://doi.org/10.1016/j.petsci.2023.02.017.

Zheng B., Gao X., Li X. Fault detection for sucker rod pump based on motor power. Control Engineering Practice. 2019. 86. P. 37-47. DOI: https://doi.org/10.1016/j.conengprac.2019.02.001.

Eastman C. An Outline of the Building Description System. Research Report No. 50. Carnegie-Mellon Univ., Pittsburgh, PA. Inst. of Physical Planning. 1974. 23 p. URL: https://eric.ed.gov/?id=ED113833.

Crotty R. The Impact of Building Infor-mation Modelling: Transforming Construction. Routledge, 2016. 232 p.

Lopatin V. V. Naukovi osnovy rozroblennia systemy kontroliu tekhnichnoho stanu zhorstkoho armuvannia shakhtnykh stovburiv : dys. ... d-ra tekhn. nauk : spets. 05.11.13 "Prylady i metody kontroliu ta vyznachennia skladu rechovyn" : Data zakhystu 21.02.13. Dnipropetrovsk, 2012. 392 p. [in Ukrainian]

Hoffman E. L. Finite Element Analysis of Sucker Rod Couplings with Guidelines for Improving Fatigue Life: Sandia report. Sandia National Laboratories, 1997. 66 p.

Kopei V.B. Rozrobliannia ta analiz para-metrychnykh skinchenno-elementnykh modelei rizbovykh ziednan v Abaqus®. Naftohazova ener-hetyka. No 1(12). 2010. P.31-36. [in Ukrainian]

Wang S., Rowlan L., Cook D., Conrady C., King R., Taylor C. A. Dynamics of pump jacks with theories and experiments. Upstream Oil and Gas Technology. 2023. 11. 100097. DOI: https://doi.org/10.1016/j.upstre.2023.100097.

Takacs G. Exact kinematic and torsional analysis of Rotaflex pumping units. Journal of Petroleum Science and Engineering. 2014. Vol. 115. P. 11-16. DOI: https://doi.org/10.1016/

j.petrol.2014.02.008.

Gibbs S. G. Rod Pumping: Modern Methods of Design, Diagnosis and Surveillance. Publisher: Author, 2012. 660 p.

Eisner P., Langbauer C., Fruhwirth R.K. Comparison of a novel finite element method for sucker rod pump downhole dynamometer card determination based on real world dynamometer cards. Upstream Oil and Gas Technology. 2022. 9. 100078. DOI: https://doi.org/10.1016/j.upstre.2022.100078.

Yin J-J., Sun D., Yang Y. Predicting multi-tapered sucker-rod pumping systems with the analytical solution. Journal of Petroleum Science and Engineering. 2021. 197. 108115. DOI: https://doi.org/10.1016/j.petrol.2020.108115.

Lv X., Wang H., Zhang X., Liu Y., Chen S. An equivalent vibration model for optimization design of carbon/glass hybrid fiber sucker rod pumping system. Journal of Petroleum Science and Engineering. 2021. 207. 109148. DOI: https://doi.org/10.1016/j.petrol.2021.109148.

Miska S., Sharaki A., Rajtar J.M. A simple model for computer-aided optimization and design of sucker-rod pumping systems. Journal of Petro-leum Science and Engineering. 1997. Vol. 17, Iss. 3–4. P. 303-312. DOI: https://doi.org/10.1016/S0920-4105(96)00071-X.

Wu Yuandeng, Liu Shaohu, Ma Weiguo, Ran Xiaofeng, Qu Baolong. Machine learning method for predicting the fatigue life of sucker rods. Engineering Fracture Mechanics. 2023. 282. 109161. DOI: https://doi.org/10.1016/j.engfracmech.2023.109161.

Zhang Ou, Wei Xueye, Wang Pei, Yan Shuxin. Finite Element Analysis of Magnetic Flux Leakage Detection for Transverse Cracks of Sucker Rod. Journal of System Simulation. 2018. Vol. 30(4). P.1504-1510. URL: https://www.china-simulation.com/EN/10.16182/j.issn1004731x.joss.201804036.

Hansen B., Tolbert B., Vernon C., Hedengren J.D. Model predictive automatic control of sucker rod pump system with simulation case study. Computers & Chemical Engineering. 2019. Vol. 121. P. 265-284. DOI: https://doi.org/10.1016/j.compchemeng.2018.08.018.

Torres L.H.S., Schnitman L., de Souza, J.A.M.F. Model Reference Adaptive Control Applied to the Improvement of the Operational Conditions of a Sucker Rod Pump System. IFAC Proceedings. 2010. Vol. 43(17). P. 231-236. DOI: https://doi.org/10.3182/20100908-3-PT-3007.00045.

Takacs G., Kis L. A new model to find optimum counterbalancing of sucker-rod pumping units including a rigorous procedure for gearbox torque calculations. Journal of Petroleum Science and Engineering. 2021. 205. 108792. DOI: https://doi.org/10.1016/j.petrol.2021.108792.

Takács G. A critical analysis of power conditions in sucker-rod pumping systems. Journal of Petroleum Science and Engineering. 2022. 210. 110061. DOI: https://doi.org/10.1016/j.petrol.2021.110061.

Liu X., Qi Y. A modern approach to the selection of sucker rod pumping systems in CBM wells. Journal of Petroleum Science and Engineering. 2011. Vol. 76(3–4). P. 100-108. DOI: https://doi.org/10.1016/j.petrol.2011.01.012.

Codas A., Ordoñez B., Moreno U.F. Sucker-Rod Pumping System Fault Detection and Isolation Method Using Bottom Hole Pressure Measurement. IFAC Proceedings Volumes. 2009. Vol. 42(8). P. 1031-1036. DOI: https://doi.org/10.3182/20090630-4-ES-2003.00170.

Lv X., Feng L., Wang H., Liu Y., Sun B. Quantitative diagnosis method of the sucker rod pump system based on the fault mechanism and inversion algorithm. Journal of Process Control. 2021. Vol. 104. P. 40-53. DOI: https://doi.org/10.1016/j.jprocont.2021.06.001.

Zhang R., Yin Y., Xiao L., Chen D. A real-time diagnosis method of reservoir-wellbore-surface conditions in sucker-rod pump wells based on multidata combination analysis. Journal of Petroleum Science and Engineering. 2021. 198. 108254. DOI: https://doi.org/10.1016/j.petrol.2020.108254.

Huang Z., Li K., Xu Z., Yin R., Yang Z., Mei W., Bing S. STP-Model: A semi-supervised framework with self-supervised learning capa-bilities for downhole fault diagnosis in sucker rod pumping systems. Engineering Applications of Artificial Intelligence. 2024. 135. 108802. DOI: https://doi.org/10.1016/j.engappai.2024.108802.

Chu X., Wang X., Xie Y., Xing G., Chen L. Association rules mining for long uptime sucker rod pumping units. Reliability Engineering & System Safety. 2024. 245. 110026. DOI: https://doi.org/10.1016/j.ress.2024.110026.

Botvina L.R., Tyutin M.R., Sinev I.O., Bolotnikov A.I. The effect of preliminary cyclic loading on acoustic emission parameters and damage of structural steels. Procedia Structural Integrity. 2020. Vol. 28. P. 2118-2125. DOI: https://doi.org/10.1016/j.prostr.2020.11.038.

Kopei B.V., Kopei V.B., Martynets O.R., Stefanyshyn O.I., Stefanyshyn A.B. Vykorystannia "dereva vidmov" yak metodu strukturnoho analizu shtanhovoi nasosnoi ustanovky. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch. 2013. No 2(47). P.62-71. [in Ukrainian]

Jiang J., Wan X., Li K., Du J., Liu Y., Jing J., Li J. Research progress of sucker rod fracture detection and prediction model. Engineering Failure Analysis. 2024. 159. 108119. DOI: https://doi.org/10.1016/j.engfailanal.2024.108119.

Published

2024-06-27

How to Cite

Cheverda, A. M., & Artym, V. I. (2024). REVIEW OF METHODS AND TOOLS FOR INFORMATION SUPPORT OF THE DPRU LIFE CYCLE BASED ON BIM TECHNOLOGIES. Scientific Bulletin of Ivano-Frankivsk National Technical University of Oil and Gas, (1(56), 49–59. https://doi.org/10.31471/1993-9965-2024-1(56)-49-59