Output parameters at development and production stage of a product in its life cycle
DOI:
https://doi.org/10.31471/1993-9965-2021-1(50)-77-90Keywords:
Life Cycle of a Product, Development and Production Stage of a Product, Technological Process, Technological Preparation, Functionally-Oriented Principle, Formation SystemAbstract
The priority of research into modern information systems for controlling technological processes of product manufacturing and their introduction into the practice of machine-building enterprises is established. Described the object-oriented and functionally-oriented principles of designing technological processes in the manufacture of machine parts and the area of their effective use. Algorithms of initial product parameters formation when implementing object-oriented and function-oriented principles of technological processes design are analyzed. A generalized algorithm of a CAF-system functioning in the structure of an integrated design-engineering preproduction is presented. The conditions of shaping product parameters taking into account the influence of an integrated subsystem of design-engineering preparation of machine-building production and technological subsystems: machine, fixture, tool, workpiece are analyzed. The main provisions of the system approach to the study of the formation of the output parameters of products at the stage of their creation in life cycles during the implementation of function-oriented design principles are formulated. The conditions for the realization of physical processes from the position of the synergetic approach in the study of technical systems are analyzed. A mathematical model for predicting the probability of forming a workpiece blank without defects at the stage of its creation during the implementation of the technological process of product manufacturing was developed. Numerous solutions of the mathematical model are given, which determine the degree of influence of technological subsystems on ensuring output parameters of the product. Using a synergetic approach, the process of forming the initial parameters of the product as a result of interaction between the integrated subsystem of design-engineering preparation of engineering production and technological subsystems: machine, device, tool, workpiece with the provision of quality control parameters of the product using the CAF subsystem and a subsystem of implementation of control operations. Further research will concern the development of algorithms for determining the solutions of mathematical models when designing technological processes for the manufacture of machine parts using a function-oriented design principle while ensuring the regulated quality parameters of their executive surfaces.
Downloads
References
Kusyi Ya.M., Kuk A.M. Investigation of the technological damageability of castings at the stage of design and technological preparation of the machine Life Cycle. Journal of Physics: Conference Series. 2020. Volume 1426. DOI:10.1088/1742-6596/1426/1/012034
URL: https://iopscience.iop.org/article/10.1088/1742-6596/1426/1/012034/pdf.
Kheifetz M.L., Vasilyev A.S., Klimenko S.A. Technological Control of the Heredity of Operational Quality Parameters for Machine Parts. Advanced Materials and Technologies. 2019. № 2.
P. 8 – 18. DOI: 10.17277/amt.2019.02.pp.008-018.
Stupnytskyy V. Features of Functionally-Oriented Engineering Technologies in Concurrent Environment. International Journal of Engineering Research & Technology (IJERT). 2013. Vol. 2, Issue 9. P. 1181–1186.
Stupnytskyy V., Hrytsay I. Comprehensive analysis of the product’s operational properties formation considering machining technology. Archive of mechanical engineering. 2020. Vol. 2, № 2.
Р. 1–19. DOI: 10.24425/ame.2020.131688.
Stupnytskyy V. Computer aided machine building technological process planning by the methods of concurrent engineering. Europaische Fachhochschule: Wissenschaftliche Zeitschrift, ORT Publishing. Stuttgart, Germany. 2013. № 3, Section 13. P.346–354.
Kusyi Ya., Stupnytskyy V. Optimization of the Technological Process Based on Analysis of Technological Damageability of Casting. Advances in Design, Simulation and Manufacturing III. Proceedings of the 3rd International Conference on Design, Simulation, Manufacturing: The Innovation Exchange, DSMIE-2020, June 9-12, 2020, Kharkiv, Ukraine. 2020. Vol. 1: Manufacturing and Materials Engineering. P. 276–284. DOI: https://doi.org/10.1007/978-3-030-50794-7_27.
Колесов И.М. Основы технологии машиностроения. М. : Машиностроение, 2000. 591 с.
Инженерия поверхности деталей / Суслов, А. Г. и др. М. : Машиностроение, 2008. 320 с.
Технологические и эксплуатационные методы обеспечения качества машин / В.Б. Альгин и др.; под общ. ред. П.А. Витязя. Минск : Беларус. навука, 2010. 109 c.
Проников А.С.: Параметрическая надежность машин. М.: Изд-во МГТУ им. Н. Э. Баумана, 2002. 560 с.
Stupnytskyy V. Subsystem of rheological forming modeling in integrated CAD/CAPP/CAM system in machine building. Вісник Національного університету «Львівська політехніка» «Комп’ютерні системи проектування. Теорія і практика». 2012. № 747. С. 139–142. URL: http://ena.lp.edu.ua:8080/bitstream/ntb/33445/1/26-139-142.pdf.
Stupnytskyy V. New features CAD/CAM/CAE systems in mechanical engineering. Europaische Fachhochschule: Wissenschaftliche Zeitschrift, ORT Publishing.- Stuttgart. 2012. № 1.P.327–329.
Мелень Р.В., Козунь В.І. Метод оцінки ефективності комплексної системи контролю правильності функціонування телекомунікаційних систем бездротового зв’язку. Сучасні проблеми і досягнення в галузі радіотехніки, телекомунікацій та інформаційних технологій: зб. тез доповідей IХ між нар. наук.-практ. конф., м. Запоріжжя, 3–5 жовтня 2018 р. Запоріжжя : ЗНТУ, 2018. – С. 49-50. URL: http://rtt.zntu.edu.ua data/Tezy_ZNTU_2018.pdf.
Иыуду К.А. Надежность, котроль и диагностика вычислительных машин и систем: учеб. пособие для вузов по спец. «Вычислительные машины, комплексы, системы и сети». М.: Высш. школа, 1989. 216 с.
Журавлев Ю.П., Котелюк Л.А., Циклинский Н.И. Надежность и контроль ЭВМ. М.: Сов. радио, 1978. 416 с.
Королюк В.С., Турбин А.Ф. Процессы марковского восстановления в задачах надежности систем. Киев: Наукова думка, 1982. 236 с.
Bobalo Yu.Ya., Horbatyi I.V., Kiselychnyk M.D., Medynsky I.P., Melen M.V. Semi-Markov reliability model of functioning of wireless telecommunication system with complex control system. Mathematical modeling and computing. 2019. Vol. 6, № 2. Р. 192-210. DOI: 10.23939/mmc2019.02.192.
Матов В.И., Белоусов Ю.А., Федосеев Е.П. Бортовые цифровые вычислительные машины и системы. М.: Высш. школа, 1988. 216 с.
Хакен Г. Синергетика. М.: Мир, 1980. 400 с.
Дружинин В.В., Конторов, Д.С. Проблемы системологии: проблемы теории сложных систем. М.: Сов. радио, 1976. 296 с.
Кононюк А. Е.: Системология. Общая теория систем: в 4-х кн. Кн. 1. Начала. К.: Освіта України. 2014. 564 с. URL: http://ecat.diit.edu.ua/ft/Systemology1.pdf.
Эбелинг В. Образование структур при необратимых процессах. Введение в теорию диссипативных структур. М.: Мир, 1979. 279 с.
Дружинин В.В., Конторов Д.С. Системотехника. М.: Радио и связь, 1985. 200 с.
Haken H. Information and Self–Organization. A Macroscopic Approach to Complex Systems: Third Enlarged Edition. Berlin: Springer, 2006. 258 p. DOI: 10.1007/3-540-33023-2.
Downloads
Published
How to Cite
Issue
Section
License
Авторські права....