
Інформаційні програми та комп’ютерно-інтегровані технології

47 ISSN 1993–9965 print

ISSN 2415–3524 online

Науковий вісник ІФНТУНГ

2023. № 2(55)

ІНФОРМАЦІЙНІ ПРОГРАМИ
ТА КОМП’ЮТЕРНО-
ІНТЕГРОВАНІ ТЕХНОЛОГІЇ

UDC 004.738:519.85
DOI: 10.31471/1993-9965-2023-2(55)-47-53

THE SHORTEST PATH PROBLEM IN A GRAPH
FOR AN EXECUTOR WITH LIMITED RESOURCES

M. S. Lvov, O. I. Lemeshchuk *

Kherson State University; 27 Universytets’ka St., Kherson, Ukraine, 73003,

e-mail: o f f i c e @ k s u . k s . u a

У статті висвітлено алгоритм Дейстктри, можливості його модифікації та узагальнене бачення

можливостей модифікації. Особливу увагу було сконцентровано на аналізі пошуку найкоротших шляхів з
обмеженими ресурсами. Дослідження проводиться з метою розширення бачення можливостей застосу-

вання алгоритмів Флойда і Дейкстри з додатковими параметрами. Водночас різні узагальнення проблеми

найкоротшого шляху розглядаються рідко. Мета даної роботи – привернути увагу вчених і викладачів

вищих навчальних закладів до одного із найбільш закономірних узагальнень проблеми. Пов’язані проблеми з

використанням алгоритму з кількома джерелами досліджував Шимін Ван під час дослідження шляхів

дорожніх мереж для зменшення часу, витраченого між зупинками, а також Пітер В. Еклунд працював над

модифікацією алгоритму, який включає статичні та динамічні евристичні компоненти, та кілька вихідних

вузлів. Модифікований алгоритм застосовано в тривимірній просторовій інформаційній системі (SIS) для

маршрутизації транспортних засобів екстреної служби. Наше узагальнення полягає в тому, що ми

розглядаємо виконавця алгоритму (wayfarer) з обмеженими ресурсами, які витрачаються на те, як ці

ресурси можуть бути поповнені в деяких вершинах графа. Потрібно знайти найкоротший шлях, за яким

виконавець може досягти цільової вершини, правильно витрачаючи і поповнюючи свої ресурси. Поряд з

цими алгоритмами розглядаються також деякі їх окремі випадки. Наприклад, це алгоритм транзитивного

замикання орієнтованого графа. Крім того, формулювання проблеми найкоротшого шляху представлено як

задачу множення матриць на замкнуті півкільця. Стаття розрахована на розширення бачення

застосування алгоритмів Флойда та Дейсктри з додатковими параметрами.

Ключові слова: задача знаходження найкоротшого шляху у графі, алгоритм Флойда, алгоритм

Дейкстри, ресурс виконавця, формальні методи, алгебраїчне програмування.

The article highlights Dijkstra’s algorithm, the possibility of its modification and a generalized vision of the

modifications’ possibility. Attention was especially paid to the analysis of the problem of finding the shortest path

with limited resources. The research is performed in order to expand the vision of the application possibilities of the

Floyd's and Dijkstra’s algorithms with additional parameters. At the same time, various generalizations of the

shortest path problem are rarely considered. The purpose of this paper is to draw the attention of scientists and

university professors to one of the natural generalizations of the problem. Related problems using a multi-source
algorithm were explored by Shiming Wang when investigating the paths of road networks to reduce the time spent

between stops , Peter W. Eklund's work on modifying the algorithm, which includes static and dynamic heuristic

components and several source nodes. The modified algorithm is applied in a 3D Spatial Information System (SIS)

for routing emergency service vehicles. Our generalization is that we consider an executor of the algorithm

(wayfarer) with limited resources that are being spent on the way these resources can be replenished in some

vertices of the graph. It is required to find the shortest path along which the executor can reach the target vertex,

mailto:office@ksu.ks.ua

Інформаційні програми та комп’ютерно-інтегровані технології

48 ISSN 1993–9965 print
ISSN 2415–3524 online

Науковий вісник ІФНТУНГ
2023. № 2(55)

correctly spending and replenishing his resources. Along with these algorithms, some of their special cases are also

considered. For example, it is directed graph transitive closure algorithm. Furthermore, the formulation of the

shortest path problem is presented as a problem of matrix multiplication over closed semirings. The paper considers

generalizations of the Floyd's and Dijkstra's algorithms for the case of both a single limited resource and multiple

resources.

Keywords: the shortest path problem in a graph, Floyd’s algorithm, Dijkstra’s algorithm, executor resource,

formal methods, algebraic programming.

Introduction

E. Dijkstra's algorithm [1] is difficult to be
applied for kind of problem and R. Floyd’s
algorithm [2] (Floyd–Warshall algorithm, Roy–
Floyd algorithm) for kind of problem. Such
an interpretation is interesting, especially because
efficient (“record-breaking” [4, 5]) algorithms for
matrix multiplication can be applied to the theory

of shortest path problems.
Here is the formulation and procedure of

Floyd's algorithm for positive path costs:

G.add_vertex('E', {'H': 1}, 0)

G.add_vertex('F', {'B': 2, 'C': 6, 'D': 8,

'G': 9, 'H': 3}, 0)

G.add_vertex('G', {'C': 4, 'F': 9}, 0)

G.add_vertex('H', {'E': 1, 'F': 3}, 1)

Matrix represents all the shortest paths in

the following way: if the last edge of the shortest

path from to exists , so . It can

be easily seen that the shortest path from to can

be extracted from in linear time.

In [1], the classical Floyd's algorithm reduces
to matrix-multiplication-like algorithm in a closed
semiring with the operation of addition

and with the operation of

multiplication . In [1] it is shown
that , where

Since the number of simple path links does
not exceed , the cost of any simple path,

including the path of least cost (the shortest path),
is less than . As two graph edges can be

connected by different paths, among all such paths

there is the least cost path. In problem
variant it is required to find the least cost paths for

all possible pairs of vertices . This problem can
be solved by R. Floyd's algorithm given in the

Floyd procedure. The costs of such paths are the
elements of result of the procedure – of the
matrix . Note that all information about the graph

is present in the matrix , and information about
the shortest paths is in the matrix . In particular,

if the vertices of the graph are connected
by some path, . Or, if the path from

vertex to vertex does not exist, so

.

G = Graph()

G.add_vertex('A', {'B': 7, 'C': 8}, 0)

G.add_vertex('B', {'A': 7, 'F': 2}, 1)

G.add_vertex('C', {'A': 8, 'F': 6, 'G': 4}, 0)

G.add_vertex('D', {'F': 8}, 1)

. (1)

This formulation represents Floyd's algorithm

as a single loop:

n = no of vertices

A = matrix of dimension n*n

for k = 1 to n

for i = 1 to n

for j = 1 to n

Ak[i, j] = min (Ak-1[i, j], Ak-1[i, k]

+ Ak-1[k, j])

return A

It was also shown in [1] that the closure

operation defined in [1] is equivalent in time
complexity to the operation of multiplying two
matrices .

Executor resources. Here is an example of
one of the obvious applications of Floyd's
algorithm. Let’s presume, graph represents the

road network of some region, and the cost of the
edges is the length of the roads that directly

connect the settlements – vertices of , expressed
as kilometers. The executor of the algorithm is a
car. Its main resource is the fuel reserve ,

expressed as distance in kilometers. So, the car
can travel kilometers on its fuel budget. At the

vertices of the subset (i.e. certain
localities) there are fuel stations for . At these

vertices can be fueled up completely. At the
beginning of the travel the car has full tank,
regardless of which vertex it is at. The problem is

to find the shortest paths in a graph , provided

Given an oriented graph
 , ,

whose edges are marked with positive

numbers , called values. The values are

represented by the matrix . Let us

assume . If

there is no edge in the graph , we

denote by . Also put .

The cost of path
 =

in the graph is the sum of
.

Інформаційні програми та комп’ютерно-інтегровані технології

49 ISSN 1993–9965 print

ISSN 2415–3524 online

Науковий вісник ІФНТУНГ

2023. № 2(55)

that the distance between successive vertices of a

subset on this path does not exceed .

1. The algorithm for finding the shortest

paths with a limited resource.

If the classical formulation of the shortest

paths problem variant can be expressed with
the tuple and the algorithm with the

Floyd function:

then the shortest paths problem with a limited
resource of the executor with the tuple

 and the algorithm
with the FloydRes function:

 .

The FloydRes algorithm below uses, at first,

the Floyd procedure, and at second, the following
operation on the matrices of costs:

,

which performs the transformation for all

if C[i,j]>r:

C[i,j] = M

This means that if the cost of an edge
exceeds the resource , that edge is not included in

any path with a constraint on that resource and,
therefore, it can be excluded from the list of edges.

Here is an informal description of the

FloydRes algorithm. The vertices from set will
be called as active ones and the vertices from

 set – passive ones.
Let’s presume that . Without the

Limits of Generality, we will assume that the
active vertices are renumbered from 1 to k:

. Meanwhile, the passive ones
are renumbered from to .

.

The FloydRes algorithm performs a

transformation of the matrix of costs C at each

step. The matrices of costs at each stage are

represented as the following, where - is

the submatrix of edge costs between pairs of active

vertices, - is the submatrix of

edge costs between pairs of passive vertices, and

 - are the submatrices of edge costs between

active and passive vertices. Thereby,

 .

1. Performing a conversion beforehand

.

Denote the transformed graph as .
2. Performing the transformation

.

The graph , constructed from a

matrix , is essentially a transitive closure :

 Performing the transformation

.

Denote the transformed graph as .

3. All shortest paths in the graph can be
classified as following:

 Pathways from passive vertex to

passive vertex with costs .

 If , then the path from

vertex to vertex does not exist.

 If , then the solution for this

pair of vertices is found.

 The case of should have

further calculations. Let's take a closer look at the

shortest path of , cost, if it exits.

Figure 1 – The shortest path to Pas

The double arrow shows the path along the

vertices of the subgraph , the single arrows

show the and edges. So, if the shortest

path with a limited resource exists, then

 .

 Pathways from passive vertex to active

vertex . So:

 If , then the pass from vertex
to vertex does not exist;

 If , then the shortest path from
to does not satisfy the constraint, and then

;

 If , then the shortest path from
to is found and it has the following form:

Figure 2 – The shortest path from Pas to Act

 Pathways from active vertex to passive

vertex . So:

 If , then the pass from vertex
to vertex does not exist;

 If , then the shortest path from
to does not satisfy the constraint, and then

;

 If , then the shortest path from
to is found and it has the following form:

Інформаційні програми та комп’ютерно-інтегровані технології

50 ISSN 1993–9965 print
ISSN 2415–3524 online

Науковий вісник ІФНТУНГ
2023. № 2(55)

Figure 3 – The shortest path from Act to Pas

 Pathways from active vertex to active
vertex , consisting of several links.

 If , then the path from vertex
to vertex does not exist;

 If , then the shortest path from
to is found and it has the following form:

Analysis of the algorithm shows the

complexity of the algorithm for finding the shortest

path with one constraint .

Since the most complex part of our algorithm
is the classic Floyd’s algorithm, its complexity can

theoretically be estimated through the fastest
matrix multiplication algorithm ,

where . Moreover, the number of efforts
of many authors, starting with Strassen [2 Gaussian

elimination is not optimal], the algorithm of matrix
multiplication is constantly decreasing [3], [4].

In practice, however, the classical time

complexity algorithm is used.

;

Figure 4 – The shortest path to Act ;

 If , then the shortest path from
;

to does not satisfy the constraint, and then ;

;
;

4. Let’s presume that submatrix of the

size is formed with the first rows and

columns of matrix of costs . Then, let’s
perform the transformation:

and take a look at matrix of costs

In graph , based on matrix , all
shortest paths are represented by edges. Fig.1, for
example, in this graph, the path has the following
form

Figure 5 – New shortest path to Act

Similar changes are applied to Fig.2, Fig.3,
Fig.4.

So,

.

5. Matrices of the shortest paths are computed

with an extended algorithm that generates the

shortest path of the executor with constraints for
any pair of vertices in linear time.

.

The algorithm for calculating the matrix of

costs must be supplemented by the algorithm

for calculating matrix of the shortest paths .

2. Problem of finding the shortest paths
with two resources

Here is a description of the problem of finding
the shortest paths in a directed graph when the
executor has two finite resources. This can be, for
example, the maximum distance travelled on a
single tank of fuel and the maximum distance the
driver can drive without taking a rest.

So, the following are given:

 Directed graph ,

, which edges are marked

with positive numbers , called weights or

costs. The costs are presented with matrix of

size. Suppose that

. As in the previous

formulation, if there is no edge in graph ,

then .

 The executor resource of type is
specified by the maximum reserve value and the
subset of vertices , where this
resource can be replenished. The resource of type

is specified by the maximum reserve value

Інформаційні програми та комп’ютерно-інтегровані технології

51 ISSN 1993–9965 print

ISSN 2415–3524 online

Науковий вісник ІФНТУНГ

2023. № 2(55)

and the subset of vertices –
generator of resource .

The task is to find the shortest paths between
all pairs of vertices in a graph along which the
following constraints are satisfied: if

 - are two vertices between which

there are no other vertices from , then the cost of

the path is .

The algorithm for finding the shortest

paths with two resources

The algorithm for solving this problem is a

direct generalization of the algorithm presented by
the Floyd’s function. FloydRes2 algorithm uses
natural number , matrices of size,

matrix of size, sets ,
positive real numbers . - sets of

active vertices of graph . - are the

constraints on resources, and matrix E stores the
amounts of unused corresponding resources on a

given path. The matrix nitialization is
performed before the main loop

i = 1

for i in range(n):

for i in range(n):

E[1,i,j] = r1

E[2,i,j] = r2

in the body of the main triple procedure loop
instead of the conditional operator

if (A[i,k]+C[k,j])<A[i,j]:

A[i,j] = A[i,k] + C[k,j]

D[i,j] = k

here the following operator was used

If isCorrect(i,j,k,r1,r2,R1, R2)
nextStep(r1,r2,R1,R2)

the semantics of the condition isCorrect(r1, r2,
R1, R2) and the calculation of the next step
nextStep(r1, r2, R1, R2) is shown on Fig. 6. It

shows the travelled path and edge
attached to this path

Figure 6 – Selecting an acceptable path

continuation

The logic function isCorrect for selecting an
acceptable path continuation considering subject to
constraints is carried out by analyzing the cost of

def isCorrect(C, A, i,j,k, r1, r2, E):
if (E[1,i,k] >= C[k,j])&

(E[2,i,k] >= C[k,j]) &
(A[i,k]+C[k,j] < A[i, j]):

return true

The matrix of size contains data
on the remains of the corresponding resources after
the travelled path (i, j).

The nextStep procedure changes the

remaining resources at a vertex taking into

account passive and active vertices:

def nextStep()

E[1,i,j] = E[1,i,k]–C[k,j];
E[2,i,j] = E[2,i,k]–C[k,j];

if j in R1:

E[1,i,j] = r1;
if j in R2:

E[2,i,j] = r2;
A[i,j] = A[i,k]+C[k,j];
D[i,j] = k

As isCorrect and nextStep procedures are

executed in , time, the time complexity of the

FloydRes2 algorithm is estimated as
Of course, the FloydRes2 algorithm can be

used in a task with a single resource. The benefits

of the FloydRes algorithm are listed below:

0. FloydRes algorithm does not use any
additional memory, while FloydRes2 algorithm
uses matrix of size for this operation.

1. FloydRes2 algorithm does not use
calculations in a bounded semicircle so its
complexity cannot be estimated .

A clear advantage of the FloydRes2 algorithm
is the possibility of using it in algorithms with
other conditions isCorrect() and calculations

nextStep.

Some algorithms for finding the shortest

paths of FloydRes2 type.

1. Dijkstra’s algorithm

The Dijkstra’s algorithm [2, 3] solves the
shortest path problem in the classical

formulation, i.e. from a given vertex to all other
vertices. Here is his text from [2] in the
pseudolanguage and in our version

def Dijkstra(...):

U: {2..n} # U – is the set of unprocessed

vertices

S: {1} # S – set of processed vertices,

U + S = V
the travelled
attached edge

and the cost of the M = max(r1, r2)

Inf = M + 1 # Inf – notation of

unreachability

path

.

Інформаційні програми та комп’ютерно-інтегровані технології

52 ISSN 1993–9965 print
ISSN 2415–3524 online

Науковий вісник ІФНТУНГ
2023. № 2(55)

С: [1..n, 1..n] # Matrix of costs of edges

No edge – C[I,j] = Inf

E1: [1..n] # vector of resource residuals

// Search for a min. unprocessed edge which
satisfies the constraints

GetMinRes2 = GetMin

R1

R2

arrays

E2: [1..n] # vector of resource residuals

D: [1..n] # vector of path values reached

for i in range(n):

D[i] = C[1,i] # initialising path value

for i in range(n-1):

w = GetMin(U,D) finding the vertex

//Function for replenishing D with the values
of the vertices of the indent w

for j in range(U):

if D[w]+C[w,j] < D[j]:

if (E1[w] >= C[i,j])& E2[w] >= C[i,j]):

E1[w] = E1[w] - C[i,j])

If w in R1:

E1[w] = r1

E2[w] = E2[w] - C[i,j])

with the min.distance to U:

moving w from U to S

U = U – {w}

S = S + {w}

replenish D by the values of vertices,

which are preceded by w

for j in range(U):

D[j] = min(D[j], D[w] + C[w,j])

An extension of the Dijkstra algorithm for the

problem type will be called as
DijkstraRes2.

Data structure specification:

U,S: array[1..n] of Boolean; //sets of vertices
to be processed and unprocessed

D: array[1..n] of Real; //array of values of
tops reached

E: array[1..2, 1..n] //array of residuals in

attained nodes

The DijkstraRes2 algorithm differs from the
classical algorithm with an initialization loop of
matrix of size, pre-processing of the
matrix of costs and subsequent implementation of
the GetMin(U,D) function:

// Initialise resource residual matrix
i = 1

for i in range(n):
E[1,i]=r1
E[2,i]=r2

// Pre-processing the value matrix
M=Max(r1,r2)

Inf=M+1

i = 1

for i in range(n):

j = 1

for j in range(n):

if C[i,j]>M:

C[I,j]=Inf

If w in R2:

E2[w] = r2

2. FloydResN algorithm with N resources
To solve a problem with N resources, we

modify our previous algorithm by adding a set of

n.
in the body of the main triple procedure loop

instead of the conditional operator

if (A[i,k,n]+C[k,j,n])<A[i,j,n]:

A[i,j,n] = A[i,k,n] + C[k,j,n]

D[i,j,n] = k

here the following operator was used

If isCorrect(i,j,k,r1,r2,R1,R2,n)
nextStep(r1,r2,R1,R2,n)

The nextStep procedure changes the

remaining resources at a vertex taking into

account passive and active vertices:

def nextStep()
E[1,i,j,n] = E[1,i,k,n]–C[k,j,n];
E[2,i,j,n] = E[2,i,k,n]–C[k,j,n];

if j in R1:

E[1,i,j,n] = r1;
if j in R2:

E[2,i,j,n] = r2;
A[i,j,n] = A[i,k,n]+C[k,j,n];
D[i,j,n] = k

The benefits of the FloydRes algorithm are
listed below:

A clear advantage of the FloydRes2 algorithm
is the possibility of using it in algorithms with
unlimited number of conditions

Conclusion

The problem considered in this paper,
according to the scheme of its formulation, belongs
to the class of optimization problems. Problems of
this class such as the linear programming problem,

Інформаційні програми та комп’ютерно-інтегровані технології

53 ISSN 1993–9965 print

ISSN 2415–3524 online

Науковий вісник ІФНТУНГ

2023. № 2(55)

or, in a more general formulation, the
mathematical programming problem, are well
known. Indeed, in this problem, a system of
constraints is explicitly defined and a criterion for
the optimality of the solution is formulated. This
raises the question of whether this problem can be
reduced to one of the well-known optimization
problems.

Similar generalizations can be considered for
some other problems on graphs. For example,
traveling salesman problem. At the same time, the
solution scheme given in this article is also
applicable to the traveling salesman problem.

Apparently, the classical Floyd’s and Dijkstra’s
algorithms act as basic algorithms in various
formulations of the shortest path problems.

From our point of view, the interesting
question is whether it is possible to construct a
solution algorithm using the Reduse() and Floyd()

operations, as it is done in the algorithm for

solving the problem with one constraint.

References

1. Dijkstra E. W. A note on two problems in
connexion with graphs. Numer. Math / F. Brezzi
— Springer Science + Business Media, 1959.
Vol. 1, Iss. 1. P. 269–271. ISSN 0029-599X; 0945-

3245. doi:10.1007/BF01386390
2. Robert W. Floyd. 1962. Algorithm 97:

Shortest path. Commun. ACM 5, 6 (June 1962),
345. DOI: https://doi.org/10.1145/367766.368168

3. Anderson J. Discrete mathematics and com-
binatorics. Moscow: Williams Publishing House,
2003. URL: https://archive.org/details/
discretemathemat0000ande

4. Evstigneev V.A. Chapter 3: Iterative
algorithms for global graph analysis. Paths and
coverages. Application of graph theory in
programming / Edited by A. P. Ershov. Moscow:
Nauka. Main editorial office of physical and
mathematical literature, 1985. P. 138–150.

5. Alexeev V.E., Talanov V.A. Chapter 3.4.

Finding of shortest paths in a graph. Graphs.
Calculation models. Data structures. Nizhny
Novgorod: Nizhny Novgorod State University
Publisher, 2005. P. 236-237. ISBN 5-85747-810-8.
Archived on December 13, 2013 at the Wayback
Machine

6. Cherkassky B. V., Goldberg A. V., Radzik
T. Shortest paths algorithms: Theory and
experimental evaluation (англ.). Math. Prog.
Springer Science + Business Media, 1996. Vol. 73,

Iss. 2. P. 129–174. ISSN 0025-5610; 1436-4646.
doi:10.1007/BF02592101

7. Wang S. et al. Double-Sources Dijkstra
Algorithm within Typical Urban Road Networks /
Xie A., Huang X. (eds) Advances in Computer
Science and Education. Advances in Intelligent and
Soft Computing. 2012. Vol. 140. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-642-
27945-4_24

7. Eklund P. W., Kirkby S., Pollitt S. A

dynamic multi-source Dijkstra's algorithm for
vehicle routing. 1996 Australian New Zealand
Conference on Intelligent Information Systems.
Proceedings. ANZIIS 96, 1996, pp. 329–333, doi:
10.1109/ANZIIS.1996.573976.

https://doi.org/10.1007/978-3-642-27945-4_24
https://doi.org/10.1007/978-3-642-27945-4_24

	M. S. Lvov, O. I. Lemeshchuk *
	G.add_vertex('E', {'H': 1}, 0)
	'G': 9, 'H': 3}, 0)
	G.add_vertex('H', {'E': 1, 'F': 3}, 1)
	G = Graph()
	G.add_vertex('B', {'A': 7, 'F': 2}, 1)
	G.add_vertex('D', {'F': 8}, 1)
	n = no of vertices
	for i = 1 to n for j = 1 to n
	+ Ak-1[k, j])
	1. The algorithm for finding the shortest paths with a limited resource.
	if C[i,j]>r:
	Figure 1 – The shortest path to Pas
	Figure 2 – The shortest path from Pas to Act
	Figure 3 – The shortest path from Act to Pas
	Figure 4 – The shortest path to Act ;
	Figure 5 – New shortest path to Act
	2. Problem of finding the shortest paths
	The algorithm for finding the shortest paths with two resources
	i = 1
	E[1,i,j] = r1
	if (A[i,k]+C[k,j])<A[i,j]:
	D[i,j] = k
	Figure 6 – Selecting an acceptable path continuation
	return true
	def nextStep()
	Some algorithms for finding the shortest paths of FloydRes2 type.
	def Dijkstra(...):
	S: {1} # S – set of processed vertices, U + S = V
	M = max(r1, r2)
	С: [1..n, 1..n] # Matrix of costs of edges No edge – C[I,j] = Inf
	GetMinRes2 = GetMin
	arrays
	D[i] = C[1,i] # initialising path value
	w = GetMin(U,D) finding the vertex
	for j in range(U):
	if (E1[w] >= C[i,j])& E2[w] >= C[i,j]): E1[w] = E1[w] - C[i,j])
	E1[w] = r1 E2[w] = E2[w] - C[i,j])
	# moving w from U to S U = U – {w}
	# replenish D by the values of vertices, which are preceded by w
	D[j] = min(D[j], D[w] + C[w,j])
	DijkstraRes2.
	i = 1 (1)
	M=Max(r1,r2)
	i = 1 (2)
	for j in range(n): if C[i,j]>M:
	If w in R2:
	if (A[i,k,n]+C[k,j,n])<A[i,j,n]:
	D[i,j,n] = k
	def nextStep() (1)
	Conclusion
	References

