InghopmauitiHi npoepamu na Komn’lmepHO-iHMez2po8aHi nexHonoz2ii

IHOOPMALINHI NPOTPAMM
TA KOMITIOTEPHO-

IHTEFTPOBAHI TEXHONOTII

UDC 004.738:519.85
DOI: 10.31471/1993-9965-2023-2(55)-47-53

THE SHORTEST PATH PROBLEM IN A GRAPH
FOR AN EXECUTOR WITH LIMITED RESOURCES

M. S. Lvov, O. I. Lemeshchuk *

Kherson State University; 27 Universytets 'ka St., Kherson, Ukraine, 73003,
e-mail; office@ksu.ks.ua

Y cmammi euceimneno ancopumm [eticmkmpu, mModxciugocmi 1o2o moougikayii ma ysacanvhene OauenHs
mooicnusocmeni moougpixayii. Ocobnugy ysazy 6yn0 CKOHYeHMpOSaHO HA AHANI3I NOWLYKY HAUKOPOMUIUX WILAXIE 3
obmedxcenumu pecypcamu. Jocniodxcents npogooumbcs 3 Memor po3WUPeHts ODAueHHs MONCIUBOCHEN 3ACMOC)-
sanHs aneopummie Drotioa i elikcmpu 3 dodamkosumu napamempamu. Boonouac pizui y3aeanvHeHHs npodiemu
HAUKOPOMuio2o wiiaxy poseniadaromsca pioko. Mema O0anoi pobomu — npusepHymu yeacy 4eHux i 8UKIa0ayie
BUWUX HABUATLHUX 3AKAA0I8 00 0OHO20 i3 HAUDINbUW 3AKOHOMIPDHUX V3aedlbHeHb npobaemu. 1106 ’a3ani npobrnemu 3
BUKOPUCIMAHHAM AI20PUMMY 3 KilbKoMa Odicepenamu 0ocnioxcysas Lllumin Ban nio uac O0ocnioscenns wisaxie
O00POIACHIX Mepedc 0N SMEHWEHHA YaCy, BUMPAYeno20 Mixc 3ynunkamu, a maxooic Ilimep B. Exnyno npayiosas nao
Moougikayiero aneopummy, KUl 6KIOUAE CIMAMUYHI MA OUHAMIYHI eBPUCTNUYHI KOMIOHEHMU, Md KiIbKA BUXIOHUX
8y31i6. Mooughikosanuii aneopumm 3acmoco8ano 6 MpUuSUMIpHIL nPocmoposiu inghopmayitniti cucmemi (SIS) ons
mapwpymuzayii mpancnopmuux 3acodie excmpenoi ciyocou. Hawe yszazamvmenus nonseac 8 momy, wo Mu
PO32NAOAEMO BUKOHABYA aNeOpummy (wayfarer) 3 obmedceHuMu pecypcamu, aKi umpavaromecsi Ha me, AK yi
pecypcu Modxcyms 6ymu nono6HeHi 6 oesaxux eeputunax epaga. Ilompibno 3uarimu HAUKOPOMMULL WLAX, 30 AKUM
BUKOHABEYL MOJICe 00CACMU YLIbOBOI GePUIUHU, NPABUILHO BUMPAYailouyu i nonoguiowuu ceoi pecypcu. Ilopad 3
YUMU aneOpUMMAamy po32isaiaomvCsa maxkoic 0esKi ix okpemi eunaoku. Hanpuxnao, ye areopumm mpan3umueHo20
3aMUKanHs opienmosanozo epaga. Kpim moeo, gopmynioeans npobiemu HAlKOPOMUIO20 WAAXY HPEOCMABIIEHO K
3a0auy MHOJICEHHA Mampuyb HA 3aMKHYmMI niekinbys. Cmamms po3paxoeamna Ha pO3ZUWUPEHHSA OaueHHs
sacmocysanus aneopummie @novida ma Jelickmpu 3 000amKosuMU NAPAMEMPAMU.

KimouoBi cioBa: 3amada 3HaXOPKEHHS HAWKOpOTHIOro HUBIXY Yy Tpadi, amroputm Pnoiiga, anroputM
JelikeTpu, pecypc BUKOHABIL, (hopMalbHI METOIH, alireOpaitHe mporpaMyBaHHsI.

The article highlights Dijkstra’s algorithm, the possibility of its modification and a generalized vision of the
modifications’ possibility. Attention was especially paid to the analysis of the problem of finding the shortest path
with limited resources. The research is performed in order to expand the vision of the application possibilities of the
Floyd's and Dijkstra’s algorithms with additional parameters. At the same time, various generalizations of the
shortest path problem are rarely considered. The purpose of this paper is to draw the attention of scientists and
university professors to one of the natural generalizations of the problem. Related problems using a multi-source
algorithm were explored by Shiming Wang when investigating the paths of road networks to reduce the time spent
between stops , Peter W. Eklund's work on modifying the algorithm, which includes static and dynamic heuristic
components and several source nodes. The modified algorithm is applied in a 3D Spatial Information System (SIS)
for routing emergency service vehicles. Our generalization is that we consider an executor of the algorithm
(wayfarer) with limited resources that are being spent on the way these resources can be replenished in some
vertices of the graph. It is required to find the shortest path along which the executor can reach the target vertex,

ISSN 1993-9965 print HaykoBwu# BicHuk IODHTYHI e
ISSN 2415-3524 online 2023. Ne 2(55)

5)


mailto:office@ksu.ks.ua

IHghopmauitiHi npozpamu na Komn’mepHO-iHmez2poeaHi nexHono2ii

correctly spending and replenishing his resources. Along with these algorithms, some of their special cases are also
considered. For example, it is directed graph transitive closure algorithm. Furthermore, the formulation of the
shortest path problem is presented as a problem of matrix multiplication over closed semirings. The paper considers
generalizations of the Floyd's and Dijkstra's algorithms for the case of both a single limited resource and multiple

resources.

Keywords: the shortest path problem in a graph, Floyd’s algorithm, Dijkstra’s algorithm, executor resource,

formal methods, algebraic programming.

Introduction

E. Dijkstra's algorithm [1] is difficult to be
applied for 1 x n kind of problem and R. Floyd’s
algorithm [2] (Floyd-Warshall algorithm, Roy-—
Floyd algorithm) for n x n kind of problem. Such
an interpretation is interesting, especially because
efficient (“record-breaking” [4, 5]) algorithms for
matrix multiplication can be applied to the theory
of shortest path problems.

Here is the formulation and procedure of
Floyd's algorithm for positive path costs:

Given an oriented graph
G=V,E= |V|l=n , V=<1, 2, , n:=
whose edges (& 7) are marked with positive
numbers CILJ], called values. The values are
represented by the n x n matrix C . Let us

nn .
assume M =n * clijl+1 .If
max;=1,j=1

there is no edge (i, j) in the graph &, we
denote by Cl[i,j] = M. Also put C[i, i] = 0.

The cost of path
(I, 3, o Bp) = (g, 12y (i2,03), (fg—1.ix)
in the graph is the sum of

Clipdo] + Cliz.da] + - + Cli 4]

Since the number of simple path links does
not exceed , the cost of any simple path,
including the path of least cost (the shortest path),
is less tha . As two graph edges can be
connected by different paths, among all such paths
there is the least cost path. In nxn problem
variant it is required to find the least cost paths for
all possible pairs of vertices i, j. This problem can
be solved by R. Floyd's algorithm given in the
Floyd procedure. The costs of such paths are the
elements of result of the procedure —n x n of the
matrixd. Note that all information about the graph
& is present in the matrix £, and information about
the shortest paths is in the matrix 4 . In particular,
if the vertices (i. j) of the graph & are connected
by some path, A[i, j]1 < M. Or, if the path from
vertex to vertgX does not exist, so
Ali, jf1=M.

G = Graph()
G.add_vertex("A", {'B': 7,'C': 8}, 0)
G.add_vertex('B', {{A": 7, 'F": 2}, 1)
G.add_vertex("C, {'A": 8, 'F': 6, 'G': 4}, 0)
G.add_vertex('D’, {"F': 8}, 1)

G.add_vertex('E', {'H": 1},0)

G.add_vertex('F', {'B': 2, 'C': 6, 'D': 8,
'G":9,'H": 3}, 0)

G.add_vertex("G', {'C': 4, 'F': 9}, 0)

G.add_vertex("H', {'E": 1,'F": 3}, 1)

Matrix D represents all the shortest paths in
the following way: if the last edge of the shortest
path from i to exists (k,j), so D[i.i1= k. It can
be easily seen that the shortest path from i to j can
be extracted from In linear time.

In [1], the classical Floyd's algorithm reduces
to matrix-multiplication-like algorithm in a closed
semiring with the operation of addition
a@b = min(a,b) and with the operation of
multiplication a&b 2 a + b . In [1] it is shown
that A = C*, where

C=ChHCH..Hen. (1)
This formulation represents Floyd's algorithm
as a single loop:

n = no of vertices
A = matrix of dimension n*n
fork=1ton
fori=1ton
forj=1ton
AK[i, j] = min (Ak-1]i, j], Ak-1]i, K]
+ Ak-11k; j])
return A

It was also shown in [1] that the closure
operation defined in [1] is equivalent in time
complexity to the operation of multiplying two
matricesn x n .

Executor resources. Here is an example of
one of the obvious applications of Floyd's
algorithm. Let’s presume, graph & represents the
road network of some region, and the cost of the
edges is the length of the roads that directly
connect the settlements — vertices of &, expressed
as kilometers. The executor of the algorithm R is a
car. lts main resource is the fuel reserve r,
expressed as distance in kilometers. So, the car R
can travel + kilometers on its fuel budget. At the
vertices of the subset V<V  (i.e. certain
localities) there are fuel stations for R. At these
vertices B can be fueled up completely. At the
beginning of the travel the car B has full tank,
regardless of which vertex it is at. The problem is
to find the shortest paths in a graph &, provided

&)

ISSN 1993-9965 print
ISSN 2415-3524 online

HaykoBun BicHuk IPHTYHI
2023. Ne 2(55)



InghopmauitiHi npoepamu na Komn’lmepHO-iHMez2po8aHi nexHonoz2ii

that the distance between successive vertices of a
subset 7. on this path does not exceedr.

1. The algorithm for finding the shortest
paths with a limited resource.

If the classical formulation of the shortest
paths problem variant n x n can be expressed with
the tuple n, V,E,C = and the algorithm with the
Floyd function:

(A, D)= Flovd(n,C)

then the shortest paths problem with a limited
resource of the executor with the tuple
<n, V, E, CkrVgcV = andthealgorithm
with the FloydRes function:

(Ag,Dg) = FloydRes(n,C,k,r,Vg) .

The FloydRes algorithm below uses, at first,
the Floyd procedure, and at second, the following
operation on the matrices of costs:

A:= Reduce(n,C,r),
which performs the transformation for all {i. j)
if C[i,j]>r:
Cli,jl=M
This means that if the cost of an edge (i. j)
exceeds the resource-, that edge is not included in
any path with a constraint on that resource and,
therefore, it can be excluded from the list of edges.
Here is an informal description of the
FloydRes algorithm. The vertices from 1%z set will
be called as active ones and the vertices from
V' — Vg set — passive ones.

Let’s presume that |[Vz| =k . Without the
Limits of Generality, we will assume that the
active vertices are renumbered from 1 to k:
Act={1, 2, _,k}. Meanwhile, the passive ones

are renumbered from E+1 to n.
Pas={k+1, .. ,nk
The FloydRes algorithm performs a

transformation of the matrix of costs C at each
step. The matrices of costs at each stage are
represented as the following, where Cg: - & % K is
the submatrix of edge costs between pairs of active
vertices, Cpas - M —k X n —k js the submatrix of
edge costs between pairs of passive vertices, and
Cap - are the submatrices of edge costs between
active and passive vertices. Thereby,

_ [Cﬂr:r Cnp]

- Cp:z Cpns '

1. Performing a conversion beforehand
A= Reduce(n,C,r).

Denote the transformed graph as G/,
2. Performing the transformation

(A2, D) = Floyd(n,AY),

ISSN 1993-9965 print

The graph G =V,{E}, constructed from a
matrix A2, is essentially a transitive closure G:
G'2) = G Performing the transformation

AB): = Reduce(n, A2, r).

Denote the transformed graph as G2’

3. All shortest paths in the graph ¢3! can be
classified as following:

Pathways from passive vertex i to

. I (3
passive vertex j with costs Apas (i, j).

® If A;,E,z}s [i,j] = M, then the path from
vertex to vertex does not exist.

o 1f 4% [i,7] = r, then the solution for this

pas

pair of vertices is found.

® The case of :1';:,1}5.[1, j1=r should have
further calculations. Let's take a closer look at the
shortest path of A[i,j] = r, cost, if it exits.

O >® > »O
i 1 m j

Figure 1 — The shortest path to Pas

The double arrow shows the path along the
vertices of the subgraph EF;;;:;, the single arrows

.
|f:|
-.

show the G,  and (Fr';f,:' edges. So, if the shortest
path with a limited resource exists, then

(3) 1. @
Al =r Ao mjl=r.

Pathways from passive vertex i to active
vertex m. So:

o |If A[i,m] = M, then the pass from vertex i
to vertex m does not exist;

e |If A[i,m] = r, then the shortest path from
i tom does not satisfy the constraint, and then
Ali,m]:= M;

e If Ali,j] = r, then the shortest path from i
tom isfound and it has the following form:

—>0

m

O >®
i 1
Figure 2 — The shortest path from Pas to Act

Pathways from active vertex I to passive
vertex j. So:

o If A[l,j] = M, then the pass from vertex !
to vertex does not exist;

e If A[l,j] = r, then the shortest path from I
to j does not satisfy the constraint, and then
AlLjl:= M;

e |If A[l,j] = r, then the shortest path from I
to jis found and it has the following form:

HaykoBui BicHuk IPHTYHIT e

ISSN 2415-3524 online 2023. Ne 2(55)

[5)



IHghopmauitiHi npozpamu na Komn’mepHO-iHmez2poeaHi nexHono2ii

o >0 »O

i m J

Figure 3 — The shortest path from Act to Pas

Pathways from active vertex I to active
vertex m , consisting of several links.

e |f A[l,m] = M, then the path from vertex !
to vertex yn does not exist;

e |f A[l,m] = r, then the shortest path from
[ toj isfound and it has the following form:

.ﬁ.
1 m
Figure 4 — The shortest path to Act

® If 4[1,j] = » then the shortest path from ;
to j does not satisfy the constraint, and then
AlLjl:=M.
4. Let’s presume that submatrix A of the

k » k size is formed with the first k& rows and

columns of matrix of costs A Then, let’s
perform the transformation:

4 Dy = Reduce(k, Floyd(n,A*", r)

act'T act act!
and take a look at matrix of costs
iy _ [ a4 403D
A — [Am:r‘qnp]
In graph G'*), based on matrix A4 all
shortest paths are represented by edges. Fig.1, for

example, in this graph, the path has the following
form

O »® »® »O
i 1 m ]
Figure 5 — New shortest path to Act

Similar changes are applied to Fig.2, Fig.3,
Fig.4.
So,
(5) _ 403) @ (3} (3}
Apas = A5a @Aﬁﬁl@ﬂﬁp @Apm
(5) _ 403 @ (3)
Age =Apg @Aﬁﬁl@.ﬂ!m

A(E}_Aidilgﬂiﬂjl%ﬂ(ﬁ}

ag apg
(s} ()

st ]
|:5 |:4 '
AM Apm

5. Matrices of the shortest paths are computed
with an extended algorithm that generates the
shortest path of the executor with constraints for
any pair of vertices (Z, j) € E in linear time.

Analysis of the algorithm shows the
complexity of the algorithm for finding the shortest
path with one constraint T(n) = 0(n?),

Since the most complex part of our algorithm
is the classic Floyd’s algorithm, its complexity can
theoretically be estimated through the fastest
matrix multiplication algorithm T(n) = 0{(n%),
where d = 3. Moreover, the number 4 of efforts
of many authors, starting with Strassen [2 Gaussian
elimination is not optimal], the algorithm of matrix
multiplication is constantly decreasing [3], [4].

In practice, however, the classical
complexity @[n®] algorithm is used.

A= Reduce(n,C,r);
(A®,D) = Floyd(n,AV);
AB®):= Reduce(n, A, r);
(A 0¥y = Reduce(k, FIG}-‘ti'[:ﬂ:A:i}# ),

act' ™ act

time

2050 _ 4@ o 43 m 403

A=A ®ABAL

() _ 403 (4) (3) (3)
Apas = Apa l:g:lﬂﬁﬁ@ﬂﬂp @Apm

(5} (5}

AI:R} — AI:E:I — [Aﬁﬂ} Aﬂ.".;
(5 4y

‘qpﬁ ‘qpﬁs

The algorithm for calculating the matrix of
costs A%} must be supplemented by the algorithm
for calculating matrix of the shortest paths D%,

2. Problem of finding the shortest paths
with two resources

Here is a description of the problem of finding
the shortest paths in a directed graph when the
executor has two finite resources. This can be, for
example, the maximum distance travelled on a
single tank of fuel and the maximum distance the
driver can drive without taking a rest.

So, the following are given:

® Directed graph G=<V,E =, |V|=n,
V=<1, 2, .., n >, which edges (i. jJ are marked
with positive numbers C[ij], called weights or
costs. The costs are presented with matrix € of
nxn size. Suppose that
M =?1-:_J};§§;len}{f [i, /1) + 1. As in the previous

formulation, if there is no edge(i, jJ in graph ,
-
then Cli,j1 = M.

® The executor resource of type Ry is
specified by the maximum reserve valug and the
subset of vertices V; =V, |V}| = ky, where this
resource can be replenished. The resource of type
R, is specified by the maximum reserve value 1,

C)

ISSN 1993-9965 print
ISSN 2415-3524 online

HaykoBun BicHuk IPHTYHI
2023. Ne 2(55)



InghopmauitiHi npoepamu na Komn’lmepHO-iHMez2po8aHi nexHonoz2ii

and the subset of vertices Vo =WV, |V =k, —
generator of resource R-.

The task is to find the shortest paths between
all pairs of vertices in a graph along which the
following constraints are satisfied: if
W, Ve Vi =1,2 - are two vertices between which
there are no other vertices from V;, then the cost of
the path is (1, v5) = 1.

The algorithm for finding the shortest
paths with two resources

The algorithm for solving this problem is a
direct generalization of the algorithm presented by
the Floyd’s function. FloydRes2 algorithm uses
natural numbern, matrices £, 4, D of n x n Size,
matrix E of 2xnxn size, sets By, B,V ,
positive real numbersr x». By, B, =V - sets of
active vertices of graph &. 1 .r. - are the

constraints on resources, and matrix E stores the
amounts of unused corresponding resources on a
given path. The matrix E enitialization is
performed before the main loop
i=1
for i in range(n):
fori in range(n):
E[Lij]=rl
E[2,i,j]=r2
in the body of the main triple procedure loop
instead of the conditional operator

if (A, K]+C[k,jD<A[j]:
Alij] = Ali.K] + Clk,j]
D[i.j] = k

here the following operator was used

If isCorrect(i,j,k,r1,r2,R1, R2)
nextStep(rl1,r2,R1,R2)

the semantics of the condition isCorrect(rl, r2,
R1, R2) and the calculation of the next step
nextStep(rl, r2, R1, R2) is shown on Fig. 6. It
shows the travelled path (i, k) and edge (k.j)
attached to this path

! Qi Crikr C2ik

O .

k i
Figure 6 — Selecting an acceptable path
continuation

The logic function isCorrect for selecting an
acceptable path continuation considering subject to
constraints is carried out by analyzing the cost of
the travelled path A[i, k] and the cost of the
attached edge C[ &, j].

def isCorrect(C, A, i,j,k, r1, r2, E):
if (E[1,i,k] >=C[k,j])&
(E[2,i,k] >=C[k,j]) &
(A[i,k]*+C[k,j]1 < AlL, j]):
return true

The matrix E of 2 x n x n size contains data
on the remains of the corresponding resources after
the travelled path (i, j).

The nextStep procedure
remaining resources at a vertex j
account passive and active vertices:

def nextStep()
E[1,i,j] = E[1,i,k]-C[k,j];
E[2.i,j]1 = E[2,i K]-C[k.j];

changes the
taking into

if j in R1:
E[1,i,j]=r1;

if j in R2:
E[2,ij]=12;

Ali.j] = Al KI+CLk,j];

D[i,jl =k

As isCorrect and nextStep procedures are
executed in O(1), time, the time complexity of the
FloydRes2 algorithm is estimated as O(n?).

Of course, the FloydRes2 algorithm can be
used in a task with a single resource. The benefits
of the FloydRes algorithm are listed below:

0. FloydRes algorithm does not use any
additional memory, while FloydRes2 algorithm
uses matrix E of n x n size for this operation.

1. FloydRes2 algorithm does not use
calculations in a bounded semicircle so its
complexity cannot be estimated 0(n<), d < 3.

A clear advantage of the FloydRes2 algorithm
is the possibility of using it in algorithms with
other conditions isCorrect() and calculations
nextStep.

Some algorithms for finding the shortest
paths of FloydRes2 type.

1. Dijkstra’s algorithm

The Dijkstra’s algorithm [2, 3] solves the
shortest path problem in the classical 1xn
formulation, i.e. from a given vertex to all other
vertices. Here is his text from [2] in the
pseudolanguage and in our version

def Dijkstra(...):

U: {2..n} # U — is the set of unprocessed
vertices

S: {1} # S — set of processed vertices,
Uu+S=V

M = max(rl, r2)

Inf = M + 1
unreachability

# Inf — notation of

ISSN 1993-9965 print
ISSN 2415-3524 online

HaykoBu# BicHuk IPHTYHIT e
2023. Ne 2(55)

{ 51



IHghopmauitiHi npozpamu na Komn’mepHO-iHmez2poeaHi nexHono2ii

C: [1..n, 1..n] # Matrix of costs of edges
No edge — C[l,j] = Inf
El: [1..n] # vector of resource residuals

R1
E2: [1..n] # vector of resource residuals
R2
D: [1..n] # vector of path values reached
foriin range(n):
D[i] = C[1,i] # initialising path value
arrays

foriin range(n-1):
w = GetMin(U,D) finding the vertex
with the min.distance to U:
# moving wfromUto S
U=U-{w}
S=S+{w}

# replenish D by the values of vertices,
which are preceded by w
for j in range(U):
D[j] = min(D[j], D[w] + C[w.j])

An extension of the Dijkstra algorithm for the
1xm problem type will be called as
DijkstraRes2.

Data structure specification:

U,S: array[1..n] of Boolean; //sets of vertices
to be processed and unprocessed

D: array[1..n] of Real; //array of values of
tops reached

E: array[1..2, 1..n] //array of residuals in
attained nodes

The DijkstraRes2 algorithm differs from the
classical algorithm with an initialization loop of
matrix E of 2 xn size, pre-processing of the
matrix of costs and subsequent implementation of
the GetMin(U,D) function:

/I Initialise resource residual matrix
i=1
for i in range(n):
E[1,i]=r1
E[2,i]=r2
Il Pre-processing the value matrix
M=Max(r1,r2)
Inf=M+1
i=1
foriin range(n):
i=1
for j in range(n):
if C[i,j]>M:
C[L,j]=Inf

/I Search for a min. unprocessed edge which
satisfies the constraints
GetMinRes2 = GetMin

//Function for replenishing D with the values
of the vertices of the indent w
for j in range(U):

if D[w]+C[w.j] < D[j]:
if (E1[w] >= C[i,j])& E2[w] >= C[i.j]):
El[w] = E1[w] - C[i,j])

If win R1:

Ellw]=rl
E2[w] = E2[w] - C[i,j])
IfwinR2:

E2[w] =r2

2. FloydResN algorithm with N resources

To solve a problem with N resources, we
modify our previous algorithm by adding a set of
n.

in the body of the main triple procedure loop
instead of the conditional operator

if (A[i,k n]+C[kj,n])<Ali,j,n]:
Ali,j,n] = Ali,k,n] + C[k.j,n]
D[i,j,n] = k

here the following operator was used

If isCorrect(i,j,k,r1,r2,R1,R2,n)
nextStep(rl1,r2,R1,R2,n)

The nextStep procedure
remaining resources at a vertex j
account passive and active vertices:

changes the
taking into

def nextStep()
E[1,i,j,n] = E[1,i,k,n]-C[K,j,n];
E[2,i,j,n] = E[2,i,k,n]-C[K,j,n];
if jin R1:
E[1,i,j,n] =11,
if j in R2:
E[2,i,j,n] =r2;
AJi,j,n] = Ali,k,n]+C[k,j,n];
DI[i,j,n] =k

The benefits of the FloydRes algorithm are
listed below:

A clear advantage of the FloydRes2 algorithm
is the possibility of using it in algorithms with
unlimited number of conditions

Conclusion

The problem considered in this paper,
according to the scheme of its formulation, belongs
to the class of optimization problems. Problems of
this class such as the linear programming problem,

C)

ISSN 1993-9965 print
ISSN 2415-3524 online

HaykoBun BicHuk IPHTYHI
2023. Ne 2(55)



IHghopmauitiHi npozpamu na Komn’mepHO-iHmez2po8aHi nexHonoz2ii

or, in a more general formulation, the
mathematical programming problem, are well
known. Indeed, in this problem, a system of
constraints is explicitly defined and a criterion for
the optimality of the solution is formulated. This
raises the question of whether this problem can be
reduced to one of the well-known optimization
problems.

Similar generalizations can be considered for
some other problems on graphs. For example,
traveling salesman problem. At the same time, the
solution scheme given in this article is also
applicable to the traveling salesman problem.
Apparently, the classical Floyd’s and Dijkstra’s
algorithms act as basic algorithms in various
formulations of the shortest path problems.

From our point of view, the interesting
question is whether it is possible to construct a
solution algorithm using the Reduse() and Floyd()
operations, as it is done in the algorithm for
solving the problem with one constraint.

References

1. Dijkstra E. W. A note on two problems in
connexion with graphs. Numer. Math / F. Brezzi
— Springer Science + Business Media, 1959.
Vol. 1, Iss. 1. P. 269-271. ISSN 0029-599X; 0945-
3245. doi:10.1007/BF01386390

2. Robert W. Floyd. 1962. Algorithm 97:
Shortest path. Commun. ACM 5, 6 (June 1962),
345. DOI: https://doi.org/10.1145/367766.368168

3. Anderson J. Discrete mathematics and com-
binatorics. Moscow: Williams Publishing House,
2003. URL: https://archive.org/details/
discretemathemat0000ande

4. Evstigneev V.A. Chapter 3: Iterative
algorithms for global graph analysis. Paths and
coverages. Application of graph theory in
programming / Edited by A. P. Ershov. Moscow:
Nauka. Main editorial office of physical and
mathematical literature, 1985. P. 138-150.

5. Alexeev V.E., Talanov V.A. Chapter 3.4.
Finding of shortest paths in a graph. Graphs.
Calculation models. Data structures. Nizhny
Novgorod: Nizhny Novgorod State University
Publisher, 2005. P. 236-237. ISBN 5-85747-810-8.
Archived on December 13, 2013 at the Wayback
Machine

6. Cherkassky B. V., Goldberg A. V., Radzik
T. Shortest paths algorithms: Theory and
experimental evaluation (anrm.). Math. Prog.
Springer Science + Business Media, 1996. Vol. 73,
Iss. 2. P. 129-174. ISSN 0025-5610; 1436-4646.
doi:10.1007/BF02592101

7. Wang S. et al. Double-Sources Dijkstra
Algorithm within Typical Urban Road Networks /
Xie A., Huang X. (eds) Advances in Computer
Science and Education. Advances in Intelligent and
Soft Computing. 2012. Vol. 140. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-642-
27945-4 24

7. Eklund P. W., Kirkby S., Pollitt S. A
dynamic multi-source Dijkstra's algorithm for
vehicle routing. 1996 Australian New Zealand
Conference on Intelligent Information Systems.
Proceedings. ANZIIS 96, 1996, pp. 329-333, doi:
10.1109/ANZ11S.1996.573976.

ISSN 1993-9965 print
ISSN 2415-3524 online

HaykoBu# BicHuk IPHTYHIT e
2023. Ne 2(55)

o)


https://doi.org/10.1007/978-3-642-27945-4_24
https://doi.org/10.1007/978-3-642-27945-4_24

	M. S. Lvov, O. I. Lemeshchuk *
	G.add_vertex('E', {'H': 1}, 0)
	'G': 9, 'H': 3}, 0)
	G.add_vertex('H', {'E': 1, 'F': 3}, 1)
	G = Graph()
	G.add_vertex('B', {'A': 7, 'F': 2}, 1)
	G.add_vertex('D', {'F': 8}, 1)
	n = no of vertices
	for i = 1 to n for j = 1 to n
	+ Ak-1[k, j])
	1. The algorithm for finding the shortest paths with a limited resource.
	if C[i,j]>r:
	Figure 1 – The shortest path to Pas
	Figure 2 – The shortest path from Pas to Act
	Figure 3 – The shortest path from Act to Pas
	Figure 4 – The shortest path to Act  ;
	Figure 5 – New shortest path to Act
	2. Problem of finding the shortest paths
	The algorithm for finding the shortest paths with two resources
	i = 1
	E[1,i,j] = r1
	if (A[i,k]+C[k,j])<A[i,j]:
	D[i,j] = k
	Figure 6 – Selecting an acceptable path continuation
	return true
	def nextStep()
	Some algorithms for finding the shortest paths of FloydRes2 type.
	def Dijkstra(...):
	S: {1} # S – set of processed vertices, U + S = V
	M = max(r1, r2)
	С: [1..n, 1..n] # Matrix of costs of edges No edge – C[I,j] = Inf
	GetMinRes2 = GetMin
	arrays
	D[i] = C[1,i]   # initialising path value
	w = GetMin(U,D) finding the vertex
	for j in range(U):
	if (E1[w] >= C[i,j])& E2[w] >= C[i,j]): E1[w] = E1[w] - C[i,j])
	E1[w] = r1 E2[w] = E2[w] - C[i,j])
	# moving w from U to S U = U – {w}
	# replenish D by the values of vertices, which are preceded by w
	D[j] = min(D[j], D[w] + C[w,j])
	DijkstraRes2.
	i = 1 (1)
	M=Max(r1,r2)
	i = 1 (2)
	for j in range(n): if C[i,j]>M:
	If w in R2:
	if (A[i,k,n]+C[k,j,n])<A[i,j,n]:
	D[i,j,n] = k
	def nextStep() (1)
	Conclusion
	References


