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У статті висвітлено алгоритм Дейстктри, можливості його модифікації та узагальнене бачення 

можливостей модифікації. Особливу увагу було сконцентровано на аналізі пошуку найкоротших шляхів з 
обмеженими ресурсами. Дослідження проводиться з метою розширення бачення можливостей застосу- 

вання алгоритмів Флойда і Дейкстри з додатковими параметрами. Водночас різні узагальнення проблеми 

найкоротшого шляху розглядаються рідко. Мета даної роботи – привернути увагу вчених і викладачів 

вищих навчальних закладів до одного із найбільш закономірних узагальнень проблеми. Пов’язані проблеми з 

використанням алгоритму з кількома джерелами досліджував Шимін Ван під час дослідження шляхів 

дорожніх мереж для зменшення часу, витраченого між зупинками, а також Пітер В. Еклунд працював над 

модифікацією алгоритму, який включає статичні та динамічні евристичні компоненти, та кілька вихідних 

вузлів. Модифікований алгоритм застосовано в тривимірній просторовій інформаційній системі (SIS) для 

маршрутизації транспортних засобів екстреної служби. Наше узагальнення полягає в тому, що ми 

розглядаємо виконавця алгоритму (wayfarer) з обмеженими ресурсами, які витрачаються на те, як ці 

ресурси можуть бути поповнені в деяких вершинах графа. Потрібно знайти найкоротший шлях, за яким 

виконавець може досягти цільової вершини, правильно витрачаючи і поповнюючи свої ресурси. Поряд з 

цими алгоритмами розглядаються також деякі їх окремі випадки. Наприклад, це алгоритм транзитивного 

замикання орієнтованого графа. Крім того, формулювання проблеми найкоротшого шляху представлено як 

задачу множення матриць на замкнуті півкільця. Стаття розрахована на розширення бачення 

застосування алгоритмів Флойда та Дейсктри з додатковими параметрами. 

Ключові слова: задача знаходження найкоротшого шляху у графі, алгоритм Флойда, алгоритм 

Дейкстри, ресурс виконавця, формальні методи, алгебраїчне програмування. 

 

The article highlights Dijkstra’s algorithm, the possibility of its modification and a generalized vision of the 

modifications’ possibility. Attention was especially paid to the analysis of the problem of finding the shortest path 

with limited resources. The research is performed in order to expand the vision of the application possibilities of the 

Floyd's and Dijkstra’s algorithms with additional parameters. At the same time, various generalizations of the 

shortest path problem are rarely considered. The purpose of this paper is to draw the attention of scientists and 

university professors to one of the natural generalizations of the problem. Related problems using a multi-source 
algorithm were explored by Shiming Wang when investigating the paths of road networks to reduce the time spent 

between stops , Peter W. Eklund's work on modifying the algorithm, which includes static and dynamic heuristic 

components and several source nodes. The modified algorithm is applied in a 3D Spatial Information System (SIS) 

for routing emergency service vehicles. Our generalization is that we consider an executor of the algorithm 

(wayfarer) with limited resources that are being spent on the way these resources can be replenished in some 

vertices of the graph. It is required to find the shortest path along which the executor can reach the target vertex, 
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correctly spending and replenishing his resources. Along with these algorithms, some of their special cases are also 

considered. For example, it is directed graph transitive closure algorithm. Furthermore, the formulation of the 

shortest path problem is presented as a problem of matrix multiplication over closed semirings. The paper considers 

generalizations of the Floyd's and Dijkstra's algorithms for the case of both a single limited resource and multiple 

resources. 

Keywords: the shortest path problem in a graph, Floyd’s algorithm, Dijkstra’s algorithm, executor resource,  

formal methods, algebraic programming. 

 

Introduction 

E. Dijkstra's algorithm [1] is difficult to be 
applied for kind of problem and R. Floyd’s 
algorithm [2] (Floyd–Warshall algorithm, Roy– 
Floyd algorithm) for kind of problem. Such 
an interpretation is interesting, especially because 
efficient (“record-breaking” [4, 5]) algorithms for 
matrix multiplication can be applied to the theory 

of shortest path problems. 
Here is the formulation and procedure of 

Floyd's algorithm for positive path costs: 
 
 
 

 

G.add_vertex('E', {'H': 1}, 0) 

G.add_vertex('F', {'B': 2, 'C': 6, 'D': 8, 

'G': 9, 'H': 3}, 0) 

G.add_vertex('G', {'C': 4, 'F': 9}, 0) 

G.add_vertex('H', {'E': 1, 'F': 3}, 1) 

Matrix      represents all the shortest paths in 

the following way: if the last edge of the shortest 

path from     to  exists , so . It can 

be easily seen that the shortest path from   to  can 

be extracted from in linear time. 

In [1], the classical Floyd's algorithm reduces 
to matrix-multiplication-like algorithm in a closed 
semiring    with    the    operation    of    addition 

and with the operation of 

multiplication . In [1] it is shown 
that , where 

 

 

 

 

 
 

  

 

Since the number of simple path links does 
not exceed  , the cost of any simple path, 

including the path of least cost (the shortest path), 
is less than  . As two graph edges can be 

connected by different paths, among all such paths 

there is the least cost path. In   problem 
variant it is required to find the least cost paths for 

all possible pairs of vertices . This problem can 
be solved by R. Floyd's algorithm given in the 

Floyd procedure. The costs of such paths are the 
elements of result of the procedure –  of the 
matrix . Note that all information about the graph 

is present in the matrix    , and information about 
the shortest paths is in the matrix . In particular, 

if the vertices   of the graph  are connected 
by some path,    . Or, if the path from 

vertex to   vertex  does not exist, so 

. 

G = Graph() 

G.add_vertex('A', {'B': 7, 'C': 8}, 0) 

G.add_vertex('B', {'A': 7, 'F': 2}, 1) 

G.add_vertex('C', {'A': 8, 'F': 6, 'G': 4}, 0) 

G.add_vertex('D', {'F': 8}, 1) 

. (1) 

This formulation represents Floyd's algorithm 

as a single loop: 

n = no of vertices 

A = matrix of dimension n*n 

for k = 1 to n 

for i = 1 to n 

for j = 1 to n 

Ak[i, j] = min (Ak-1[i, j], Ak-1[i, k] 

+ Ak-1[k, j]) 

return A 

It was also shown in [1] that the closure 

operation defined in [1] is equivalent in time 
complexity to the operation of multiplying two 
matrices . 

Executor resources. Here is an example of 
one of the obvious applications of Floyd's 
algorithm. Let’s presume, graph represents the 

road network of some region, and the cost of the 
edges is the length of the roads that directly 

connect the settlements – vertices of , expressed 
as kilometers. The executor of the algorithm is a 
car. Its main resource is the fuel reserve  , 

expressed as distance in kilometers. So, the car 
can travel  kilometers on its fuel budget. At the 

vertices   of   the   subset        (i.e. certain 
localities) there are fuel stations for  . At these 

vertices can be fueled up completely. At the 
beginning of the travel the car has full tank, 
regardless of which vertex it is at. The problem is 

to find the shortest paths in a graph  , provided 

Given an oriented graph 
  , , 

whose edges  are marked with positive 

numbers , called values. The values are 

represented by the matrix . Let us 

assume  . If 

there is no edge in the graph , we 

denote by  . Also put . 

The cost of path 
 =   

in the graph is the sum of 
. 
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that the distance between successive vertices of a 

subset  on this path does not exceed . 

1. The algorithm for finding the shortest 

paths with a limited resource. 

If the classical formulation of the shortest 

paths problem variant can be expressed with 
the tuple    and the algorithm with the 

Floyd function: 
 

 

then the shortest paths problem with a limited 
resource of the executor with the tuple 

     and the algorithm 
with the FloydRes function: 

 . 

The FloydRes algorithm below uses, at first, 

the Floyd procedure, and at second, the following 
operation on the matrices of costs: 

, 

which performs the transformation for all  

if C[i,j]>r: 

C[i,j] = M 

This means that if the cost of an edge   
exceeds the resource , that edge is not included in 

any path with a constraint on that resource and, 
therefore, it can be excluded from the list of edges. 

Here is an informal description   of   the 

FloydRes algorithm. The vertices from  set will 
be called as active ones and the vertices from 

 set – passive ones. 
Let’s presume that     . Without the 

Limits of Generality, we will assume that the 
active vertices are renumbered from 1 to k: 

. Meanwhile, the passive ones 
are      renumbered      from to         . 

. 

The FloydRes algorithm performs a 

transformation of the matrix of costs C at each 

step. The matrices of costs at each stage are 

represented as the following, where  - is 

the submatrix of edge costs between pairs of active 

vertices,  - is the submatrix of 

edge costs between pairs of passive vertices, and 

  - are the submatrices of edge costs between 

active and passive vertices. Thereby, 

 . 

1. Performing a conversion beforehand 

. 

Denote the transformed graph as . 
2. Performing the transformation 

. 

The graph , constructed from a 

matrix , is essentially a transitive closure : 

 Performing the transformation 

. 

Denote the transformed graph as . 

3. All shortest paths in the graph  can be 
classified as following: 

 Pathways from passive vertex to 

passive vertex with costs . 

 If , then the path from 

vertex to vertex does not exist. 

 If , then the solution for this 

pair of vertices is found. 

 The case of     should have 

further calculations. Let's take a closer look at the 

shortest path of , cost, if it exits. 

 

Figure 1 – The shortest path to Pas 

 

The double arrow shows the path along the 

vertices of the subgraph , the single arrows 

show the     and     edges. So, if the shortest 

path with a limited resource exists, then 

 . 

 Pathways from passive vertex to active 

vertex . So: 

 If  , then the pass from vertex 
to vertex does not exist; 

 If , then the shortest path from 
to does not satisfy the constraint, and then 

; 

 If , then the shortest path from 
to is found and it has the following form: 

 

Figure 2 – The shortest path from Pas to Act 

 

 Pathways from active vertex to passive 

vertex . So: 

 If , then the pass from vertex 
to vertex does not exist; 

 If , then the shortest path from 
to does not satisfy the constraint, and then 

; 

 If , then the shortest path from 
to is found and it has the following form: 
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Figure 3 – The shortest path from Act to Pas 

 

 Pathways from active vertex to active 
vertex , consisting of several links. 

 If  , then the path from vertex 
to vertex does not exist; 

 If , then the shortest path from 
to  is found and it has the following form: 

Analysis of the algorithm shows the 

complexity of the algorithm for finding the shortest 

path with one constraint . 

Since the most complex part of our algorithm 
is the classic Floyd’s algorithm, its complexity can 

theoretically be estimated through the fastest 
matrix multiplication algorithm   , 

where . Moreover, the number      of efforts 
of many authors, starting with Strassen [2 Gaussian 

elimination is not optimal], the algorithm of matrix 
multiplication is constantly decreasing [3], [4]. 

In practice, however, the classical time 

complexity  algorithm is used. 

; 

Figure 4 – The shortest path to Act  ; 

 If , then the shortest path from 
;
 

to   does not satisfy the constraint, and then  ; 

; 
;
 

4. Let’s presume that submatrix   of the 

size is formed with the first rows and  

columns   of   matrix   of   costs   . Then, let’s 
perform the transformation: 

 

 
and take a look at matrix of costs 

 

 

In graph , based on matrix , all 
shortest paths are represented by edges. Fig.1, for 
example, in this graph, the path has the following 
form 

 

Figure 5 – New shortest path to Act 

 

Similar changes are applied to Fig.2, Fig.3, 
Fig.4. 

So, 
 

 
 

 
 

 

 
. 

 
5. Matrices of the shortest paths are computed 

with an extended algorithm that generates the 

shortest path of the executor with constraints for 
any pair of vertices in linear time. 

. 

 
The algorithm for calculating the matrix of 

costs  must be supplemented by the algorithm 

for calculating matrix of the shortest paths . 

2. Problem of finding the shortest paths 
with two resources 

Here is a description of the problem of finding 
the shortest paths in a directed graph when the 
executor has two finite resources. This can be, for 
example, the maximum distance travelled on a 
single tank of fuel and the maximum distance the 
driver can drive without taking a rest. 

So, the following are given: 

 Directed     graph , 

, which edges are marked 

with positive numbers , called weights or 

costs. The costs are presented with matrix       of 

size. Suppose that 

. As in the previous 

formulation, if there is no edge   in graph , 

then . 

 The   executor   resource   of   type is 
specified by the maximum reserve value and the 
subset of vertices , where this 
resource can be replenished. The resource of type 

is specified by the maximum reserve value 
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and the subset of vertices      – 
generator of resource . 

The task is to find the shortest paths between 
all pairs of vertices in a graph along which the 
following constraints are satisfied: if 

 - are two vertices between which 

there are no other vertices from , then the cost of 

the path is . 

The algorithm for finding the shortest 

paths with two resources 

The algorithm for solving this problem is a 

direct generalization of the algorithm presented by 
the Floyd’s function. FloydRes2 algorithm uses 
natural number  , matrices  of   size, 

matrix      of size, sets    , 
positive real numbers       .   - sets of 

active  vertices  of  graph     .  - are the 

constraints on resources, and matrix E stores the 
amounts of unused corresponding resources on a 

given   path.   The   matrix nitialization is 
performed before the main loop 

i = 1 

for i in range(n): 

for i in range(n): 

E[1,i,j] = r1 

E[2,i,j] = r2 

in the body of the main triple procedure loop 
instead of the conditional operator 

if (A[i,k]+C[k,j])<A[i,j]: 

A[i,j] = A[i,k] + C[k,j] 

D[i,j] = k 

here the following operator was used 

If isCorrect(i,j,k,r1,r2,R1, R2) 
nextStep(r1,r2,R1,R2) 

the semantics of the condition isCorrect(r1, r2, 
R1, R2) and the calculation of the next step 
nextStep(r1, r2, R1, R2) is shown on Fig. 6. It 

shows the travelled path   and edge    
attached to this path 

 

Figure 6 – Selecting an acceptable path 

continuation 

 

The logic function isCorrect for selecting an 
acceptable path continuation considering subject to 
constraints is carried out by analyzing the cost of 

def isCorrect(C, A, i,j,k, r1, r2, E): 
if (E[1,i,k] >= C[k,j])& 

(E[2,i,k] >= C[k,j]) & 
(A[i,k]+C[k,j] < A[i, j]): 

return true 

The matrix     of size contains data 
on the remains of the corresponding resources after 
the travelled path (i, j). 

The nextStep procedure changes the 

remaining resources at a vertex     taking into 

account passive and active vertices: 

def nextStep() 

E[1,i,j] = E[1,i,k]–C[k,j]; 
E[2,i,j] = E[2,i,k]–C[k,j]; 

if j in R1: 

E[1,i,j] = r1; 
if j in R2: 

E[2,i,j] = r2; 
A[i,j] = A[i,k]+C[k,j]; 
D[i,j] = k 

As isCorrect and nextStep procedures are 

executed in , time, the time complexity of the 

FloydRes2 algorithm is estimated as  
Of course, the FloydRes2 algorithm can be 

used in a task with a single resource. The benefits 

of the FloydRes algorithm are listed below: 

0. FloydRes algorithm does not use any 
additional memory, while FloydRes2 algorithm 
uses matrix    of size for this operation. 

1. FloydRes2 algorithm does not use 
calculations in a bounded semicircle so its 
complexity cannot be estimated . 

A clear advantage of the FloydRes2 algorithm 
is the possibility of using it in algorithms with 
other conditions isCorrect() and calculations 

nextStep. 

Some algorithms for finding the shortest 

paths of FloydRes2 type. 

 

1. Dijkstra’s algorithm 

The Dijkstra’s algorithm [2, 3] solves the 
shortest path problem in the classical 

formulation, i.e. from a given vertex to all other 
vertices. Here is his text from [2] in the 
pseudolanguage and in our version 

 
def Dijkstra(...): 

U: {2..n} # U – is the set of unprocessed 

vertices 

S: {1} # S – set of processed vertices, 

U + S = V 
the travelled 
attached edge 

and the cost of the M = max(r1, r2) 

Inf = M + 1 # Inf – notation of 

unreachability 

path 

. 
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С: [1..n, 1..n] # Matrix of costs of edges 

No edge – C[I,j] = Inf 

E1: [1..n] # vector of resource residuals 

// Search for a min. unprocessed edge which 
satisfies the constraints 

GetMinRes2 = GetMin 

R1 

R2 

 

 

arrays 

E2: [1..n] # vector of resource residuals 

D: [1..n] # vector of path values reached 

for i in range(n): 

D[i] = C[1,i]   # initialising path value 

 
 

for i in range(n-1): 

w = GetMin(U,D) finding the vertex 

 

//Function for replenishing D with the values 
of the vertices of the indent w 

for j in range(U): 

 

if D[w]+C[w,j] < D[j]: 

if (E1[w] >= C[i,j])& E2[w] >= C[i,j]): 

E1[w] = E1[w] - C[i,j]) 

If w in R1: 

E1[w] = r1 

E2[w] = E2[w] - C[i,j]) 

with the min.distance to U: 

# moving w from U to S 

U = U – {w} 

S = S + {w} 

 

# replenish D by the values of vertices, 

which are preceded by w 

for j in range(U): 

D[j] = min(D[j], D[w] + C[w,j]) 

 

An extension of the Dijkstra algorithm for the 

problem type will be called as 
DijkstraRes2. 

Data structure specification: 

 

U,S: array[1..n] of Boolean; //sets of vertices 
to be processed and unprocessed 

D: array[1..n] of Real; //array of values of 
tops reached 

E: array[1..2, 1..n] //array of residuals in 

attained nodes 
 

The DijkstraRes2 algorithm differs from the 
classical algorithm with an initialization loop of 
matrix       of size, pre-processing of the 
matrix of costs and subsequent implementation of 
the GetMin(U,D) function: 

 
// Initialise resource residual matrix 
i = 1 

for i in range(n): 
E[1,i]=r1 
E[2,i]=r2 

// Pre-processing the value matrix 
M=Max(r1,r2) 

Inf=M+1 

i = 1 

for i in range(n): 

j = 1 

for j in range(n): 

if C[i,j]>M: 

C[I,j]=Inf 

If w in R2: 

E2[w] = r2 

 

2. FloydResN algorithm with N resources 
To solve a problem with N resources, we 

modify our previous algorithm by adding a set of 

n. 
in the body of the main triple procedure loop 

instead of the conditional operator 

if (A[i,k,n]+C[k,j,n])<A[i,j,n]: 

A[i,j,n] = A[i,k,n] + C[k,j,n] 

D[i,j,n] = k 

here the following operator was used 

If isCorrect(i,j,k,r1,r2,R1,R2,n) 
nextStep(r1,r2,R1,R2,n) 

 
The nextStep procedure changes the 

remaining resources at a vertex      taking into 

account passive and active vertices: 
 

def nextStep() 
E[1,i,j,n] = E[1,i,k,n]–C[k,j,n]; 
E[2,i,j,n] = E[2,i,k,n]–C[k,j,n]; 

if j in R1: 

E[1,i,j,n] = r1; 
if j in R2: 

E[2,i,j,n] = r2; 
A[i,j,n] = A[i,k,n]+C[k,j,n]; 
D[i,j,n] = k 

 

The benefits of the FloydRes algorithm are 
listed below: 

A clear advantage of the FloydRes2 algorithm 
is the possibility of using it in algorithms with 
unlimited number of conditions 

 
Conclusion 

The problem considered in this paper, 
according to the scheme of its formulation, belongs 
to the class of optimization problems. Problems of 
this class such as the linear programming problem, 
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or, in a more general formulation, the 
mathematical programming problem, are well 
known. Indeed, in this problem, a system of 
constraints is explicitly defined and a criterion for 
the optimality of the solution is formulated. This 
raises the question of whether this problem can be 
reduced to one of the well-known optimization 
problems. 

Similar generalizations can be considered for 
some other problems on graphs. For example, 
traveling salesman problem. At the same time, the 
solution scheme given in this article is also 
applicable to the traveling salesman problem. 

Apparently, the classical Floyd’s and Dijkstra’s 
algorithms act as basic algorithms in various 
formulations of the shortest path problems. 

From our point of view, the interesting 
question is whether it is possible to construct a 
solution algorithm using the Reduse() and Floyd() 

operations, as it is done in the algorithm for 

solving the problem with one constraint. 
 

References 

 

1. Dijkstra E. W. A note on two problems in 
connexion with graphs. Numer. Math / F. Brezzi 
— Springer Science + Business Media, 1959. 
Vol. 1, Iss. 1. P. 269–271. ISSN 0029-599X; 0945- 

3245. doi:10.1007/BF01386390 
2. Robert W. Floyd. 1962. Algorithm 97: 

Shortest path. Commun. ACM 5, 6 (June 1962), 
345. DOI: https://doi.org/10.1145/367766.368168 

3. Anderson J. Discrete mathematics and com- 
binatorics. Moscow: Williams Publishing House, 
2003. URL: https://archive.org/details/ 
discretemathemat0000ande 

4. Evstigneev V.A. Chapter 3: Iterative 
algorithms for global graph analysis. Paths and 
coverages. Application of graph theory in 
programming / Edited by A. P. Ershov. Moscow: 
Nauka. Main editorial office of physical and 
mathematical literature, 1985. P. 138–150. 

5. Alexeev V.E., Talanov V.A. Chapter 3.4. 

Finding of shortest paths in a graph. Graphs. 
Calculation models. Data structures. Nizhny 
Novgorod: Nizhny Novgorod State University 
Publisher, 2005. P. 236-237. ISBN 5-85747-810-8. 
Archived on December 13, 2013 at the Wayback 
Machine 

6. Cherkassky B. V., Goldberg A. V., Radzik 
T. Shortest paths algorithms: Theory and 
experimental evaluation (англ.). Math. Prog. 
Springer Science + Business Media, 1996. Vol. 73, 

Iss. 2. P. 129–174. ISSN 0025-5610; 1436-4646. 
doi:10.1007/BF02592101 

7. Wang S. et al. Double-Sources Dijkstra 
Algorithm within Typical Urban Road Networks / 
Xie A., Huang X. (eds) Advances in Computer 
Science and Education. Advances in Intelligent and 
Soft Computing. 2012. Vol. 140. Springer, Berlin, 
Heidelberg. https://doi.org/10.1007/978-3-642- 
27945-4_24 

7. Eklund P. W., Kirkby S., Pollitt S. A 

dynamic multi-source Dijkstra's algorithm for 
vehicle routing. 1996 Australian New Zealand 
Conference on Intelligent Information Systems. 
Proceedings. ANZIIS 96, 1996, pp. 329–333, doi: 
10.1109/ANZIIS.1996.573976. 

https://doi.org/10.1007/978-3-642-27945-4_24
https://doi.org/10.1007/978-3-642-27945-4_24

	M. S. Lvov, O. I. Lemeshchuk *
	G.add_vertex('E', {'H': 1}, 0)
	'G': 9, 'H': 3}, 0)
	G.add_vertex('H', {'E': 1, 'F': 3}, 1)
	G = Graph()
	G.add_vertex('B', {'A': 7, 'F': 2}, 1)
	G.add_vertex('D', {'F': 8}, 1)
	n = no of vertices
	for i = 1 to n for j = 1 to n
	+ Ak-1[k, j])
	1. The algorithm for finding the shortest paths with a limited resource.
	if C[i,j]>r:
	Figure 1 – The shortest path to Pas
	Figure 2 – The shortest path from Pas to Act
	Figure 3 – The shortest path from Act to Pas
	Figure 4 – The shortest path to Act  ;
	Figure 5 – New shortest path to Act
	2. Problem of finding the shortest paths
	The algorithm for finding the shortest paths with two resources
	i = 1
	E[1,i,j] = r1
	if (A[i,k]+C[k,j])<A[i,j]:
	D[i,j] = k
	Figure 6 – Selecting an acceptable path continuation
	return true
	def nextStep()
	Some algorithms for finding the shortest paths of FloydRes2 type.
	def Dijkstra(...):
	S: {1} # S – set of processed vertices, U + S = V
	M = max(r1, r2)
	С: [1..n, 1..n] # Matrix of costs of edges No edge – C[I,j] = Inf
	GetMinRes2 = GetMin
	arrays
	D[i] = C[1,i]   # initialising path value
	w = GetMin(U,D) finding the vertex
	for j in range(U):
	if (E1[w] >= C[i,j])& E2[w] >= C[i,j]): E1[w] = E1[w] - C[i,j])
	E1[w] = r1 E2[w] = E2[w] - C[i,j])
	# moving w from U to S U = U – {w}
	# replenish D by the values of vertices, which are preceded by w
	D[j] = min(D[j], D[w] + C[w,j])
	DijkstraRes2.
	i = 1 (1)
	M=Max(r1,r2)
	i = 1 (2)
	for j in range(n): if C[i,j]>M:
	If w in R2:
	if (A[i,k,n]+C[k,j,n])<A[i,j,n]:
	D[i,j,n] = k
	def nextStep() (1)
	Conclusion
	References


